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Abstract—This paper studies a class of neighborhood con-
straints to characterize and repair erroneous entity informa-
tion in multi-relational graph data. (1) We propose a class
of constraints called star functional dependencies (StarFDs).
Unlike conventional integrity constraints, a StarFD enforces
value dependencies conditioned by entities and their relevant
neighbors, which are identified by a star pattern that incorporates
conjunctive regular path queries. StarFDs achieve a balance
between expressiveness and complexity: the validation of StarFDs
is tractable, and the satisfiability and implication of StarFDs are
NP-complete and coNP-complete, respectively. (2) Given a set of
StarFDs Σ and a graph G, the entity repair problem is to compute
a minimum repair of G by enforcing Σ with the smallest amount
of changes. Although this problem is NP-complete and hard to
approximate, we show it is feasible to compute repairs in large
graphs. Our approach (a) discriminately detects and resolves
errors with optimal, approximable and cost-bounded solutions
whenever possible, and (b) incurs a time cost determined by
Σ and the size of inconsistencies, for all cases. Using real world
data, we show that StarFD-based techniques effectively identify
and repair errors. We also show that our repairing algorithms
benefit other tasks such as fact checking.

Index Terms—data cleaning, knowledge graphs.

I. INTRODUCTION

Real-world graph data is often “dirty” [12], [26], [35]. A
major class of errors in the ubiquitous attributed, multire-
lational graphs refer to incorrect attribute values and types
pivoted at the entities (nodes). As observed in [34], 23.22%
(resp. 25.14%) of 700 sampled triples from diverse classes
are caused by incorrect attribute values (resp. wrong types).
The need for repairing erroneous entity information is evident
in graph search [33], knowledge base completion [25], and
provenance [31]. Although integrity constraints such as func-
tional dependencies are extended to capture inconsistencies
in labeled graphs [16], the research on repairing erroneous
entities in multirelational graphs is still in its infancy.

Unlike data cleaning based on integrity constraints [9],
repairing erroneous attribute values of entities in a multire-
lational graph G is more involved. (1) It may require the
checking of violations of value constraints among the attributes
of the nodes that are “semantically” associated with each other.
Such semantic association may not necessarily be explicitly
encoded as direct edges (due to e.g., incompleteness), but paths
summarized by regular expressions [3], [6]. (2) Repairing
process by updating attribute values requires the detection of
new violations via such semantic association.
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Fig. 1: Capturing erroneous attributes with regular expressions

Consider the following examples.

Example 1: [Capturing errors with regular expressions]
Fig. 1 illustrates a fraction of a knowledge base G1 about
athletes. Each node may carry a type (e.g., football
players) and a set of attributes (e.g., name) with values (e.g.,
“Van Persie”). An athlete has associated career information
such as the clubs they play for (e.g., “Arsenal F.C.”), their
coaches (e.g., “A. Wenger”), stadiums (e.g., “Emirates”)
and training facilities (e.g., “ATC”). There are two errors
about facts of “Van Persie”: the city of the stadium “Emirates”
and the city of the training facility “Aon” are marked as
‘Bristol’ and ‘Leeds’, respectively.

Such errors can be identified and corrected by the following
constraint posed on the neighborhood of football players: “if
a stadium and a facility relevant to the same football player
from Premier League are owned by the same company, then
they should locate at the same city.” Here the relevant stadiums
and facilities of a football player in G1 are (1) not explicitly
encoded by direct neighbors of football players, and (2) may
connect to a football player via paths with different labels.
Such semantic correlation is identified by a pattern P1 with
two regular expressions below:

• R1 = (playsFor · operates) ∪ (coachedBy · worksAt)
• R2 = (playsFor · operates) ∪ (teammate≤1 · trainsAt)

Given football player “Van Persie”, R1 specifies stadiums
relevant to him as those “either operated by his club, or those
where his coach works at”. Similarly, R2 identifies his relevant
facilities as those “operated by his club, or those where he or
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at most one of his teammate trains at”. Given the correct
location “ATC” (resp. “Old Trafford”), the city ‘Bristol’ of
stadium “Emirates” (resp. ‘Leeds’ of facility “Aon”) should
be corrected as ‘London’ (resp. ‘Manchester’).

Another example from academic networks (e.g., Mathe-
matics Genealogy) suggests that a researcher’s area can be
determined by checking value constraints from his academic
genealogy (G2 in Fig. 1). A researcher “M. Franklin” has
a wrong area ‘Robotics’. This can be detected by enforcing the
following constraint: “a researcher should have a consistent
area with (1) an area his thesis is in or his close coauthors
(within 1 hop) have, and (2) the area is also shared by his
close advisors (within 2 hops). The constraint is specified by
pattern P2 with regular expressions R3 and R4, and identifies
a correct domain “DBMS” for the entity “M. Franklin”. �

These examples suggest the need to condition the integrity
and value constraints with semantic associations. Such seman-
tic associations from e.g., “career” or “academic genealogy”
can be characterized as multirelational regular paths [3], [6].

While desirable, repairing the errors captured by violations
of such constraints is nontrivial.

Example 2: [Repairing under constraints with regular ex-
pressions] The semantic association specifying relevant stadi-
ums and facilities can be expressed by a tree pattern P1 shown
in Fig. 1. One solution is to update the city of “Emirates” from
‘Bristol’ to ‘London’, and update the city of entity “Aon” from
‘Leeds’ to ‘Manchester’. Another solution updates the city
‘London’ of “ATC” to ‘Bristol’, and the city ‘Manchester’ of
“Old Trafford” to ‘Leeds’, and the owner company ‘AHP’ to
e.g., ‘BCFC. Ltd’ for both “ATC” and “Emirates”. One may
prefer the first repair that makes fewer changes to the attribute
values, given that the second repair may modify values that
are highly confident to be correct or incur larger editing cost.
Moreover, new inconsistencies may be introduced due to the
modification of the node attributes. �

The above examples call for constraint models that can
incorporate semantic associations captured by regular expres-
sions to detect erroneous entities in multirelational graphs, as
well as effective repairing algorithms.

Contribution. This paper studies feasible constraints and
algorithms to repair entity information in large graphs.

(1) We propose star functional dependencies (StarFDs), a
class of neighborhood constraints to detect erroneous attribute
values of entities in multirelational graphs (Section II). A
StarFD incorporates a star pattern that encodes a class of con-
junctive regular path queries to locate semantically associated
neighbors of entities, and enforces value constraints over these
entities. StarFDs achieve a balance between expressiveness
and computational cost for error detection: the validation
problem is tractable for StarFDs. We present an algorithm
to detect errors with StarFDs. In addition, we show that (1)
the satisfiability problem of StarFDs is NP-complete; and (2)
the implication problem is coNP-complete.

(2) We approach minimum cost repairs to correct errors
(Section III). We introduce a cost model for repairs, and
formulate an entity repair problem under StarFDs. Given a
graph G and a set of StarFDs Σ, it is to compute a new
graph G′ that satisfies the StarFDs Σ and incurs a minimum
editing cost. Although the validation of StarFDs is tractable,
the entity repair under StarFDs is NP-complete, and is hard to
approximate. Despite the hardness, we show that entity repair
is within reach in practice for large G.

(3) We introduce an entity repairing framework (Section IV
and V). The framework partitions the inconsistencies to com-
ponents that can be independently repaired, and discriminately
computes optimal, approximate and cost-bounded solutions for
each component respectively whenever possible, by detecting
corresponding conditions that ensure the existence of such
repairs. All these algorithms incur a time cost determined only
by the size of constraints |Σ|, and a bounded neighborhood of
erroneous entities. These ensure practical applications of our
repairing algorithms.

(4) We experimentally verify the effectiveness and efficiency
of our graph repairing algorithms, using real-world graphs
from diverse categories (Section VI). We find that erroneous
entities can be efficiently captured and repaired by enforcing
StarFDs. For example, for Yago with 4.4 million edges, it
takes up to 1.6 seconds to identify erroneous entities, and
4.4 seconds to compute repairs respectively, even for top
frequent types such as Person. The repairs in turn improve
the effectiveness of knowledge base completion [25], [27],
where correct neighborhood information plays a critical role.

Related Work. We categorize the related work as follows.

Graph data dependencies. Integrity constraints and data de-
pendencies such as functional dependencies (FDs) have been
extended to detect inconsistencies in graphs [16]. These
constraints incorporate subgraph isomorphism to identify the
fraction of graphs the value constraints that should hold.
For example, a graph functional dependency (GFD) ϕ with
subgraph pattern Q enforces value constraints on node at-
tributes identified by Q via subgraph isomorphism [16]. Note
that semantic associations that help identify attribute errors
may not be easily captured by strict subgraph isomorphism.
Moreover, error detection using e.g.,GFDs is already coNP-
complete [16] (where an error is defined as a subgraph iso-
morphism), making repairing framework inherently expensive.
StarFDs incorporate regular expressions to capture semantic
associations for feasible error detection. It permits tractable
error detection processes, striking a balance between expres-
siveness and repairing cost. Repairing algorithms are also not
addressed in these work.

Constraint-based Repairing. Computing (optimal) repairs has
been studied to satisfy given FDs [7], [20] and its variants [9].
These methods repair relational data by minimally modifying
tuples. NADEEF [10] compiles constraints into logic operators
and uses MAX-SAT solvers to minimize the editing cost. It
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repairs RDF tuples by recasting graphs to relational encoding
and enforces conventional constraints, instead of capturing and
repairing errors characterized by semantic associated entities
specified via multirelational paths.

Repairing XML data [17], [29] conforms to XML schema
with minimum cost. [17] assigns the nodes in XML subtrees
with reliability values (true or false) and updates unreliable
content of elements. [29] constructs a conflict hypergraph
to encode violations, where each node is a value and each
hyperedge is formed by a set of values violating a FD. It
then resolves the violations by value modifications. Graph
repairing has been recently studied under constraints defined
by subgraph isomorphism [8], [15]. GRRs [8] compute graph
repairs by enforcing changes that are explicitly encoded by two
subgraph patterns. GQRs [15] assumes reliable ground truth,
and deduces a certain fix of graphs. Vertex label repairs [28]
apply constraints that state which labels are allowed for a node,
and focuses on computing a minimum relabeling of nodes to
satisfy the label constraints.

Our work differs from prior work in the following. (1) In
contrast to schema-level XML repairing [17], [29], we focus
on repairing instance-level errors in general multirelational
graph data. (2) We develop algorithms that repair erroneous
attribute values enforced by StarFDs via regular path queries,
beyond updating node labels [28]. (3) StarFDs do not require
strong constraints that encode topological change as in [8]. Our
repairing framework computes repairing process under mini-
mum editing cost model by enforcing StarFDs. This is also
very different from [15] that refers to reliable ground truth.
We provide algorithms with guarantees on repairing quality in
terms of graph editing cost and constraint satisfiability. These
are not addressed by prior work.

II. NEIGHBORHOOD CONSTRAINTS

A. Star Constraints: A characterization

Graphs. We consider directed, attributed graphs G =
(V,E, L, fA), where V is a set of nodes and E ⊆ V × V
is a set of edges. Each node v ∈ V (resp. edge e ∈ E) has a
label L(v) (resp. L(e)) from a finite alphabet τ . For each node
v ∈ V , a function fA assigns a tuple fA(v) to v, which is a
sequence of attribute-value pairs {(v.A1, a1), . . . (v.An, an)},
where (v.Ai, ai) (i ∈ [1, n]) represents that the node attribute
v.Ai has a constant value ai. The active domain of G, denoted
as adom(G), is a finite set of values of v.A in G, with v
ranging over V and A ranging over all attributes of v.

In practice, the label L(v) (resp. L(e)) may encode the
type (e.g., football player in G1, Fig. 1) of an entity v
(resp. relation name of edge e (e.g., coachedBy)); and the
function fA specifies its properties (e.g., v.league = ‘EPL’), as
seen in property graphs [2], knowledge bases [12] and social
networks [21]. We shall also use the following notations. (1)
A path ρ in G is a sequence of edges e1 = (v1, v2), e2 =
(v2, v3), . . ., en = (vn, vn+1). The length of ρ refers to the
number of edges in the sequence. (2) The label of ρ (denoted

as L(ρ)) is the concatenation of all the edge labels following
the sequence, i.e., L(ρ) = L(e1) · L(e2) · · ·L(en).

We next introduce a class of star patterns to characterize
semantically associated neighbors of an entity.

Star patterns. A star pattern P (uo) = (VP , EP , LP , fR) is
a single rooted two-level tree with a set of pattern nodes VP
(resp. pattern edges EP ). (1) VP consists of a center uo, and
a set of leaf nodes VP \ {uo}. Each node u ∈ VP has a label
LP (u). (2) For each leaf node ui in VP and each edge ep =
(uo, ui), the function fR assigns a regular expression fR(ep)
defined by a fragment of regular expressions below:

R ::= l|l≤k|R ·R|R ∪R

where l is either an edge label from an alphabet τ , or a
wildcard ’ ’ that stands for any label in τ . l≤k denotes the
concatenation of no more than k occurrences of label l (k
is an integer and k ≥ 1). R · R (resp. R ∪ R) denotes the
concatenation (resp. disjunction) of regular expressions. We
denote the language defined by the expression R as L(R),
i.e., all the strings that can be parsed by R.

Star matches. We use the following notations. (1) A node v
in G is a candidate of a pattern node u in P (uo), denoted as
v ∼ u, if L(v) = LP (u). A pair of nodes (vo, v) in G is a
candidate of a pattern edge ep = (uo, u), denoted as (vo, v) ∼
ep, if vo ∼ uo (resp. v ∼ u), and there exists a path ρ from
vo to v, such that L(ρ) ∈ L(fR(ep)). (2) The matches of the
center uo, denoted as P (uo, G), contains all the candidates vo
of uo, such that for every edge ep ∈ EP , there exists a node
v such that (vo, v) ∼ ep.

A star match at a match vo of uo (vo ∈ P (uo, G)), denoted
as P (G, vo), refers to the maximum set {(vo, v)| (vo, v) ∼
ep, ep ∈ EP }. Moreover, given a pattern node u in P (uo), the
matches of u at vo, denoted as P (u,G, vo), refers to the node
set {v|(vo, v) ∼ (uo, u), (vo, v) ∈ P (G, vo)}. The match set
of a star pattern P (uo) in G, denoted as P (G), refers to the
set of all the star matches, i.e., P (G) =

⋃
vo∈P (uo,G) P (G, vo).

Intuitively, star matches identify the matches of the “center”
entity uo along with their semantically associated neighbors.
Such association is captured by regular path queries [3], [6].

Example 3: Fig. 1 illustrates a star pattern P1 (resp. P2)
centered at football player (resp. researcher). P1

specifies relevant stadium and facility of each entity
that matches football player, via paths that satisfy
R1 and R2, respectively. The table below illustrates relevant
entities specified by P1.

notation match set
P1(uo, G1) {vo}
P1(G1, vo) {(vo, v1), (vo, v2), (vo, v3), (vo, v4)}

P1(u1, G1, vo) {v1, v4}
P1(u2, G1, vo) {v2, v3}

P1(G1) {(vo, v1), (vo, v2), (vo, v3), (vo, v4)}

Similarly, the matches of P2 specify relevant researchers
(e.g., “A. Halevy” (v9)) and domains (e.g., “DBMS” (v8))
for a specified researcher (e.g., “M. Franklin” (v′o)). �
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Remarks. We do not require the paths that match ep ∈ EP to
be simple paths. This is to avoid excluding relevant entities
reachable by cycles, which are commonly found in e.g.,
social communities with mutual relations [24]. We also do not
include Kleene stars to exclude “weak” semantic association
and irrelevant entities via arbitrarily long paths [36], which
may have little contribution to identify erroneous attributes.

We now introduce star functional dependencies, incorporat-
ing star patterns and value constraints.

Star constraints. A star functional dependency (StarFD) is
in the form of

ϕ = (P (uo), X → Y, µ)

where (1) P (uo) is a star pattern with a center uo; (2) µ is a
function to assign a unique variable xu to each node u ∈ VP ;
and (3) X and Y are two sets of literals defined over the
set of variables assigned by µ. Each literal can be either (a)
a constant literal xu.A = a, where a is a constant, or (b) a
variable literal xu.A = xu′ .A′, where A and A′ may refer to a
node attribute or specifically the label of u and u′, respectively.
When A refers to a node label, xu.A refers to L(u).

We simply denote xu as u and denote (P (uo), X → Y, µ)
as (P (uo), X → Y ) when the context is clear.
Semantics. We first characterize the satisfiability of literals.
Given a star match P (G, vo) and a literal l, we say P (G, vo)
satisfies l, denoted as P (G, vo) |= l, if the following holds:

• If l is a constant literal u.A = c, then for every match v
in P (u,G, vo), v.A = c;

• If l is a variable literal u.A = u′.A′, then for every match
v ∈ P (u,G, vo), there exists a match v′ ∈ P (u′, G, vo),
such that v.A = v′.A′, or vice versa.

We say P (G, vo) satisfies X , denoted as P (G, vo) |= X , if (1)
P (G, vo) 6= ∅, and (2) P (G, vo) |= l for every literal l ∈ X .
P (G, vo) |= Y is defined similarly.

Given a graph G and a StarFD ϕ = (P (uo), X → Y ), we
say G satisfies ϕ, denoted as G |= ϕ, if for every star match
P (G, vo) centered at a node vo ∈ P (uo, G), if P (G, vo) |=
X , then P (G, vo) |= Y . In other words, ϕ enforces value
constraints Y on the attributes of nodes that are semantically
associated to a match vo of uo and satisfy condition X .

A graph G satisfies a set of StarFDs Σ, denoted as G |= Σ,
if G |= ϕ for every ϕ ∈ Σ. It is consistent w.r.t. Σ if G |= Σ.

Example 4: The constraint that uses star pattern P1 (Fig. 1)
to identify location errors can be expressed by a StarFD
ϕ1 = (P1(uo), X1 → Y1), where X1 contains two literals
l1: uo.league = ‘EPL’ and l2: u1.owner = u2.owner, and Y1

contains a single literal u1.city = u2.city. Similarly, a StarFD
ϕ2 = (P2(uo), X2 → Y2) captures errors in research domains
in G2, where X2 contains a literal l′1: u′1.area = u′2.area, and
Y2 contains a literal l′2: u′0.area = u′2.area.

One can verify the following. (1) As vo.league = ‘EPL’,
and v1.owner = v2.owner (resp. v3.owner = v4.owner),
P (G, vo) |= X1. (2) As there does not exist a match v′ in

symbols notations
G a graph G = (V,E, L, fA)

P (uo) a star pattern with a center node uo

P (uo, G) the matches of center node uo of P in graph G
P (G, vo) a star match at a match vo of center uo

P (u,G, vo) the matches of u in P (G, vo) at node vo
ϕ, Σ StarFD ϕ = (P (uo), X → Y ); Σ is a set of StarFDs

(P (G, vo), ϕ)
a consistent (resp. inconsistent) pair

if P (G, vo) |= ϕ (resp. P (G, vo) 6|= ϕ)
I(ϕ,G) (resp. I(Σ, G)) inconsistencies under a StarFD ϕ (resp. Σ)

Table I: Notations

P1(u2, G, vo), such that v1.city = v′.city, P1(G1, vo) 6|= Y1.
Thus, P1(G1, vo) 6|= ϕ. Similarly, P2(G2, v

′
o) 6|= ϕ2. �

We consider nontrivial StarFDs in a normal form that (a)
Y contains a single literal, (b) X 6= ∅, and Y 6∈ X . Our
results can be easily extended to lift these assumptions (see
Appendix).

Inconsistencies. We now characterize errors in terms of
violations of StarFDs. Given graph G and a StarFD ϕ =
(P (uo), X → Y ), an inconsistency is a pair I = (P (G, vo), ϕ),
such that P (G, vo) is a star match at node vo, P (G, vo) |= X
and P (G, vo) 6|= Y . That is, (1) if Y is a constant literal
u.A = c, then there exists no match v ∈ P (u,G, vo) such
that v.A = c; or (2) if Y is a variable literal u.A = u′.A,
then there exists a match v ∈ P (u,G, vo) such that no
match v′ ∈ P (u′, G, vo) satisfies v.A = v′.A′, or vice versa.
Otherwise, (P (G, vo), ϕ) is a consistent pair. For example,
given StarFD ϕ1 and star match P1(G1, vo) at node vo in
G1 (Example 4), (P1(G1, vo), ϕ1) is an inconsistent pair.
Similarly, (P2(G2, v

′
o), ϕ2) is an inconsistent pair.

The inconsistencies under ϕ, denoted as I(ϕ,G), refer
to the set of all the inconsistent pairs (P (G, vo), ϕ) in G.
The inconsistencies under StarFDs Σ are similarly defined as
I(Σ, G) =

⋃
ϕ∈Σ I(ϕ,G).

The main notations of this paper are summarized in Table I.

B. Fundamental Problems

We next study three fundamental problems for StarFDs. The
validation analysis identifies inconsistencies under StarFDs to
be repaired. The satisfiability analysis helps us decide whether
a repair exists under StarFDs. The implication analysis reduces
redundant constraints that can be already implied.

Validation. Given a set of StarFDs Σ and a graph G, the
validation problem for StarFDs is to decide whether G |= Σ.
A validation algorithm of StarFDs can be easily extended to
a procedure that computes all inconsistencies that violate Σ,
which is a first step for computing repairs.

We have good news for StarFDs.

Theorem 1: StarFDs validation is in PTIME. �

As a constructive proof of Theorem 1, we present an
algorithm errorDetect to compute I(Σ, G). Given Σ and graph
G, errorDetect performs two steps. (1) For each StarFD ϕ =
(P (uo), X → Y ), errorDetect initializes and evaluates a con-
junctive regular path query Q(uo) =

∧n
i=1Qi(uo). For each

edge epi = (uo, ui) ∈ EP (i ∈ [1, n]), it initializes a regular
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path query Qi that returns all the node pairs (vo, v) ∼ ei in G.
It then invokes a procedure StarMatch to compute the set of
star matches P (G). The procedure StarMatch follows regular
path query evaluation [33] to construct a query automata
and perform consecutive regular reachability tests guided by
the automata (see details in Appendix). For P (uo) with n
pattern edges, the matches of uo is computed as P (uo, G)
=
⋂n

i=1 Pi(uo, G). For each star match P (G, vo), it checks
whether P (G, vo) |= X and P (G, vo) 6|= Y . If so, it adds
(P (G, vo), ϕ) to I(Σ, G).

The algorithm errorDetect correctly computes (at
most card(Σ)|V | star matches and inconsistencies, in
O(card(Σ)|V |+ |V |(|V |+ |E|)) time. Here card(Σ) refers to
the number of StarFDs in Σ. errorDetect validates whether
G |= Σ, by testing if I(Σ, G) = ∅. Theorem 1 thus follows.

Satisfiability. Given a set Σ of StarFDs, a graph G is a model
of Σ, if (1) G |= Σ, and (2) for each StarFD (P (uo), X → Y ),
P (G) 6= ∅. The satisfiability problem of StarFDs is to decide
whether there exists a model of a given set of StarFDs Σ.

Our first result shows that the satisfiability of StarFDs,
unlike its counterpart for GFDs (coNP-hard), is still in NP.

Theorem 2: StarFDs satisfiability is NP-complete. �

Proof sketch: We develop an NP algorithm that guesses
a small model G for Σ, and check whether G |= Σ, in
polynomial time. To see the lower bound, we construct a
reduction from the satisfiability problem of conditional func-
tional dependencies, which is shown to be NP-hard [13]. We
provide the detailed proof in Appendix. �

Implication. Given a set of StarFDs Σ and a StarFD ϕ, the
implication problem is to decide whether Σ implies ϕ, denoted
as Σ |= ϕ, i.e., for every graph G, if G |= Σ, then G |= ϕ.

Theorem 3: StarFDs implication is coNP-complete. �

Proof sketch: We show that deciding Σ 6|= ϕ is NP-complete.
For the upper bound, we present an NP algorithm that guesses
a mapping h from each edge e′R in a StarFD ϕ′ ∈ Σ to an
edge eR in ϕ such that e′R and eR preserve node labels, and
preserve equivalent regular languages. For the lower bound,
we construct a reduction from the non-equivalence problem
of two regular expressions without Kleene star, which is NP-
complete (cf. [19]). The detailed proof is in Appendix. �

Remarks. We consider StarFDs-based error detection as a
more efficient option but also compatible with graph functional
dependencies (GFDs) [16]. (1) StarFDs capture semantically
associated entities with regular path queries. This supports
more flexible error identification via indirect connections with
heterogeneous edges. (2) Error detection using GFDs is coNP-
hard [16], and the inconsistencies defined by subgraph isomor-
phisms may “overlap” and specify the same erroneous entities
for a single GFD. StarFDs identifies at most card(Σ)|V |
inconsistencies in polynomial time. The star matches can

further be inspected under GFDs and other constraints. We
defer StarFDs with general patterns to future work.

III. ENTITY REPAIRING

We now formalize entity repairing under StarFDs.

Repairs. Given a set of StarFDs Σ and a graph G such that
G 6|= Σ, a repair is a graph G′ = G⊕O, such that G′ |= Σ, i.e.,
I(Σ, G′) = ∅. Here O refers to a set of single updates applied
to (⊕) G . Each single update (or simply “update”) o ∈ O is
a triple (v.A, a, c), where v is a node in G, (v.A, a) ∈ fA(v),
i.e., a is the value of the node attribute v.A in G, and c is a
constant (c 6= a) that replaces a.

We characterize repairs with two practical specifications.
Coping with incomplete graphs. The real value of a node
attribute v.A may not be already seen in G due to incomplete-
ness [25], [27] or new constant enforced by StarFDs. Follow-
ing conventional data cleaning that uses “marked nulls” [18],
we allow an update o = (v.A, a, c) to set value c as either (1)
a constant c ∈ adom, where adom is the union of adom(G)
(Section II-A) and the set of constants appeared in the literals
from Σ, or (2) a variable vc from an infinite set V , which
stands for a constant not in adom, encoding a “missing value”.

A repair G′ with variables vc allows the suggestion of
(cheap) consistent graphs under Σ; the variables can be later
inferred via e.g., graph completion, as suggested by [25].
Partial repairs. A partial repair of G w.r.t. inconsistencies
I, denoted as G′I , is a graph where for each inconsistency
I = (P (G, vo), ϕ) ∈ I, P (G′I , vo) |= ϕ. We shall use
partial repairs to capture the dynamic process of our repair
algorithms. Clearly, a partial repair G′I is a repair under Σ
when I = I(Σ, G).

We consider updates to attribute and type values only, and
defer the study of more complex cases that involve edge ma-
nipulation (e.g., edge insertions and deletions) in future work
due to their impact to both topology and value constraints.

Minimum Repairs. To measure the quality of repairs, we
approach minimum repairs, a common method to suggest
repairs by minimally modifying the original database [20]. We
introduce a cost model for repairs.

Consider a repair G′ = G⊕O under Σ. For each node v in
G, let v′ be its updated counterpart in G′. Given an attribute
A, the value distance between v and v′ w.r.t. A is defined as

dist(v.A, v′.A) =

{
dist(a, c, v.A) c ∈ adom
1 c = vc, vc ∈ V

where dist(a, c, v.A) is a function that computes a normalized
distance between constants a and c by update o = (v.A, a, c).

The function dist(a, c, v.A) can be Levenshtein dis-
tance [11], semantic distance [36] or Euclidean distance [30],
measuring distance for strings, class labels or numerical val-
ues, respectively. The distance can also be weighted by e.g.,
confidence of correctness of value a. A higher score indicates
a larger cost of a being replaced.
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The distance between two nodes v and v′ is defined as

dist(v, v′) =
∑

A∈fA(v)

dist(v.A, v′.A)

The repair cost of G′ = G ⊕ O, simply denoted as c(O), is
naturally defined as the total editing cost of all node tuples
that are updated by O. It is computed as

c(O) =
∑
v∈V

dist(v, v′)

Example 5: Consider the inconsistency (P1(G1, vo), ϕ1) in
Example 4. One repair may apply O1 = {o1, o2} to G1,
where o1 = (v4.city, ‘Bristol’, ‘London’) and o2 = (v2.city,
‘Leeds’, ‘Manchester’). Another repair aplies O2 = {o3},
where o3 = (vo.league, ‘EPL’, vc), and vc is a “marked null”
variable. Assume dist(‘Bristol’,‘London’, v4.city) is 0.2, and
dist(‘Leeds’, ‘Manchester’, v2.city) is 0.3, then c(O1) = 0.5.
The update o3 has the highest cost 1.0, due to e.g., higher
confidence that ‘EPL’ is correct, or due to a large editing cost.
Thus O1 is preferred due to smaller total repair cost. �

We state the minimum entity repair problem as follows:

• Input: a graph G, a finite set of StarFDs Σ.
• Output: a repair G′ = G⊕O under Σ (or equivalently, a

set of updates O), such that c(O) ≤ c(O′) for any other
repair G⊕O′ of G obtained by O′ under Σ.

The decision version of this problem is to decide whether
there exists a repair G′ with a cost c(O) ≤ B, for a cost
budget B. Despite that error detection is tractable, computing
optimal repairs is nontrivial.

Theorem 4: Given a graph G and a set of StarFDs Σ, the
entity repair problem is (1) NP-complete for the decision ver-
sion, and (2) APX-hard, even when Σ involves only constant
literals or only variable literals. �

The hardness can be shown by a reduction from the min-
imum dominating set problem, which is inapproximable for
c log(n) for some constant c > 0 and input size n [5]. We
present the detailed proof in Appendix.

Remarks. We do not simply exclude “marked nulls” or
updates that violate X literals from possible repairs. Such
repairs subsume a condition table defined on repaired entities,
following constraint-based repairing [9], [18], [20]. The pos-
sible updates can be suggested to users for further refinement.
Nevertheless, one can penalize undesired updates with cost
functions e.g., setting the cost of “null” updates to 1.0. Our
repair framework (Section IV) can be readily extended to
produce “not null” or ‘’enforce Y literals only” repairs [18].

IV. COMPUTING MINIMUM REPAIRS

A major challenge of entity repairing is to cope with new
inconsistencies during the repairing process. We introduce a
feasible repairing framework, denoted as StarRepair. Given
a graph G and a set of StarFDs Σ, StarRepair computes a
set of updates O to induce a repair G′ = G ⊕ O. It adopts a

Algorithm StarRepair

Input: Graph G, a set of StarFDs Σ.
Output: A repair G′ of G under Σ.

1. set O := ∅; set (I(Σ, G),G) := errorDetect(G,Σ);
2. set PI := partition(I(Σ, G));
3. for each CC I in PI do
4. set UI := genUpdate(I);
5. if isIsolated(I,G) then
6. if isHyperStar(I,UI) then

/* computing optimal repairs */
7. O := O ∪ optRepair(I,UI);

else /* computing approximable repairs */
8. O := O ∪ apxRepair(I,UI);
9. induce non-isolated CCs I from PI ;

/* compute bounded repairs for remaining CCs */
10. O := O ∪ boundedRepair(I,G) for each non-isolated I;
11. return G′ := G⊕O.

Fig. 2: Algorithm StarRepair: a dichotomous approach

dichotomous approach, to (1) detect and cope with cases that
admit optimal and approximate repairs, and (2) resolve the
rest inconsistencies by cost-bounded repairs. For all cases, it
incurs a time cost determined by the size of Σ and bounded
hop of star matches.
A. A general framework

We start with an auxiliary structure called interaction graphs
to encode the dynamic repairing process.

Interaction Graph. We say pairs (P (G, vo), ϕ) (where ϕ
= (P (uo), X → Y )) and (P ′(G, v′o), ϕ′) (where ϕ′ =
(P ′(uo), X ′ → Y ′)) are connected at node attribute v.A, if
there exists a node v with attribute A in G, such that (a) v
is a match of a node u (resp. u′) in P (uo) (resp. P ′(uo)),
and (b) u.A (resp. u′.A′) appears in X ∪ Y (resp. X ′ ∪ Y ′).
Otherwise, they are disconnected.

An interaction graph G contains the following: (1) each
node in G is either a consistent pair or an inconsistency
(P (G, vo), ϕ), and (2) there exists an edge between two
connected pairs that also carries all node attributes v.A the
pairs are connected at. A connected component (CC) in G
is a set of inconsistencies I from G, such that (1) any two
inconsistencies in I are connected via a path of connected
inconsistencies in I, and (2) no inconsistency in I is connected
to another inconsistency not in I.

We say a CC I is isolated, if for every inconsistency
(P (G, vo), ϕ) ∈ I, each consistent pair (P ′(G, v′o), ϕ′) in G
connected with (P (G, vo), ϕ) at any node attribute v.A, one
of the following cases holds:

Case consistent pair (P ′(G, v′o), ϕ′) place of v.A in X′ ∪ Y ′ of ϕ′

(1) P ′(G, v′o) |= X′ ∧ P ′(G, v′o) |= Y ′, v.A appears in X′ but not in Y ′

(2) P ′(G, v′o) 6|= X′ ∧ P ′(G, v′o) |= Y ′, v.A appears in either X′ or Y ′

(3) P ′(G, v′o) 6|= X′ ∧ P ′(G, v′o) 6|= Y ′, v.A appears in Y ′ but not in X′

The above condition characterizes a set of inconsistencies
that do not introduce new inconsistencies when repaired.

Outline. Algorithm StarRepair (Fig. 2) uses a set I(Σ, G)
to track the inconsistencies in G under StarFDs Σ, and it
computes repairs by processing each CC in G independently.
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(1) It invokes procedure errorDetect to compute I(Σ, G) and
construct G (line 1), and invokes a procedure partition to split
I(Σ, G) to a set PI of CCs (line 2). It ensures that the repairs
for each CC can be independently computed (to be discussed).

(2) For each CC I ∈ PI , it invokes procedure genUpdate to
generate a set of atomic updates UI (to be discussed). If I is
isolated (line 5), it computes approximate repairs by procedure
apxRepair (line 8). A special case that bears optimal repairs
(line 6; to be discussed) is verified and processed by procedure
optRepair (line 7). This repeats until all CCs are processed.

(3) For the remaining CCs that are not isolated, it invokes
procedure boundedRepair (line 9-10) to compute a valid repair
with repair cost as small as possible. StarRepair then returns
G′ by applying O (line 11).

We next introduce two procedures partition and genUpdate,
followed by their properties that ensure repair quality.

Procedure partition. We partition I(Σ, G) to a set of CCs
PI = {I1, . . . , In}. This can be performed by a traversal in
G, which has at most O(card(Σ)|V |) nodes (pairs), and can
be readily constructed by procedure errorDetect (line 1).

Example 6: Consider graph G1 in Fig. 1. Let v5.residence
= ‘London’, v5.nationality = ‘UK’, v5.league = ‘EPL’, and
there is a node v6 “Strasbourg” with label city in ‘France’
(not shown), where “A. Wenger” (v5) was born in. Consider
two StarFDs below. (1) StarFD ϕ3 = (P3(u3), X3 → Y3)
states that “if a coach uo from league ‘EPL’ works at a
stadium u1, then uo.residence = u1.city.” (2) StarFD ϕ4 =
(P4(u4), X4 → Y4) states that “if a coach uo was born in a
city u1 in ‘France’, then uo.nationality = ‘France’.” Procedure
errorDetect identifies the following inconsistencies I(Σ, G).

CCs pair star match

CC1
I1 = (P1(G1, vo), ϕ1) {(vo, v1), (vo, v2), (vo, v3), (vo, v4)}
I2 = (P3(G1, v5), ϕ3) {(v5, v4)}

CC2 I3 = (P4(G1, v5), ϕ4) {(v5, v6)}

I(Σ, G) is then partitioned into CC1 and CC2, since I1 and
I2 are connected at v3.city, but neither connects to I3. �

Atomic updates. Given an inconsistency I = (P (G, vo), ϕ), for
a literal l ∈ X ∪ Y of ϕ, an atomic update w.r.t. literal l is
a set of single updates, denoted as ol, such that G ⊕ ol is a
partial repair of G w.r.t. I , obtained by “enforcing” Y (if l is
the literal in Y ) or minimally “violating” l ∈ X for P (G, vo).
We define the set UI = {ol : l ∈ X ∪ Y }.
Procedure genUpdate (line 4). Given a CC I, genUpdate
computes a set of atomic updates UI =

⋃
I∈I UI . This is to

prepare a “pool” of updates to repair CC I. It computes UI
by processing each inconsistency I = (P (G, vo), ϕ) ∈ I and
each literal l in X ∪ Y of ϕ with the following cases.
(1) l is a constant literal u.A = c. (a) If l ∈ Y , it enforces l by
adding ol = {(v.A, a, c) : v ∈ P (u,G, vo) and a 6= c} to UI .
(b) Otherwise (l ∈ X), for each v ∈ P (u,G, vo), it adds ol

= {(v.A, a, vc)} to UI , where vc ∈ V is the variable “marked
null”. Each such ol leads to violation of X if applied.

(2) l is a variable literal u.A = u′.A′. (a) If l ∈ Y , it finds
the nodes v in P (u,G, vo) that has no node in P (u′, G, vo)
to satisfy l. For each such node v, it adds (v.A, a, v′.A′) to
ol, and finally adds ol to UI , where v′ ranges over the nodes
in P (u′, G, vo). (b) Otherwise (l ∈ X), it finds all the pairs
(v, v′) such that v ∈ P (u,G, vo), v′ ∈ P (u′, G, vo) and v.A =
v′.A′. It creates violations of l by adding ol = {(v.A, a, vc)}
and o′l = {(v′.A′, a′, v′c)} to UI , where vc and v′c are two
distinct variables not seen in UI .

(3) In addition, for each I = (P (G, vo), ϕ) in I and each ol

in UI , genUpdate verifies if ol is also an atomic update to
I ′, for each inconsistency I ′ = (P ′(G, v′o), ϕ′) in I that are
connected to I in G. If so, it adds ol to UI′ . This captures a
case that one atomic update repairs multiple inconsistencies.

Procedure isIsolated (line 5). isIsolated verifies whether a
given CC is isolated. For each inconsistency I ∈ I, it iterates
consistent pairs (P ′(G, v′o), ϕ′) that are connected to I in G,
and for all node attributes v.A they are connected at, it verifies
the three cases by the definition of isolated CCs. The above
process is in polynomial time in the size of G.

Performance guarantees. We show properties of partition
and genUpdate that ensure quality guarantees of repairs.

A partial repair GI = G⊕OI is an α-approximate partial
repair (α ≥ 1), if c(OI) ≤ α · c(OI∗), where OI∗ is the
partial repair of I with minimum cost.

Lemma 1: If all the CCs Ii processed by StarRepair are
isolated CCs, and GIi = G⊕O

i
is an α-approximate partial

repair w.r.t. Ii, then G′ = G⊕
⋃

i∈[1,n]Oi is an α-approximate
repair of G under Σ. �

Proof sketch: For each isolated CC, a partial repair can
be obtained by applying a set of atomic updates without
introducing new inconsistencies, ensured by the conditions that
prevent changing any consistent pair to inconsistency via node
attributes they connect at. As such, the union of α-approximate
partial repairs for isolated CCs is a partial repair under Σ that
preserves the approximation ratio α. �

Lemma 2: Given CC I, (1) for any inconsistency I ∈ I,
G′I = G ⊕ ol for any atomic update ol ∈ UI generated by
genUpdate is a partial repair of G w.r.t. I; and (2) for any
partial repair G′I = G ⊕ OI , there exists a set of atomic
updates U ′I ⊆ UI , such that

⋃
ol∈U ′I o

l ⊆ OI . �

We present the proof of Lemma 2 in Appendix. It suffices
to consider only UI to repair each CC I. Let |Σ| =

∑
ϕ∈Σ |ϕ|

be an “encoding” size of Σ, where |ϕ| is the total size of star
pattern (including regular expressions) and the size of literals.
The size of UI is bounded by O(|I||Σ||adom|) by genUpdate,
and can be generated in O(|I||Σ||adom|) time. The above
analysis ensures partial repairs of isolated CCs can provide
repairs of G with quality guarantees (lines 5-8).
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B. Approximating Optimal Repairs

We show the optimal partial repairs of I can be efficiently
approximated for isolated I.

Theorem 5: There exists an |Σ|2|I|-approximation to com-
pute a partial repair for an isolated CC I in O(|I||Σ|2 +
|I|(|I||Σ|2 + |I||Σ|)) time. �

We next introduce procedure apxRepair, as a constructive
proof for Theorem 5. Our main idea is to build a hypergraph to
capture the dependencies among the atomic updates over I,
and compute repairs by approximating a minimum weighted
constrained vertex cover of the hypergraph.

Weighted hypergraph. Given an isolated CC I and a set of
atomic updates UI , apxRepair constructs a hypergraph H =
(UI , E), where each node ol ∈ UI is an atomic update with
a weight c(ol), and each hyperedge in E is the set UI for an
inconsistency I ∈ I. We say a set of atomic updates U ′I ⊆ UI
is a vertex cover, if U ′I ∩UI 6= ∅ for each hyperedge UI ∈ E
(i.e., U ′I is a vertex cover of H).

Forbidden pairs. To ensure that a vertex cover U ′I corresponds
to a valid partial repair, apxRepair introduces a special class of
forbidden edges E¬, where each forbidden edge e¬ encodes
a forbidden pair (ol, o′l) that are mutually exclusive in a valid
repair, i.e., only one of ol or o′l can coexist in U ′I should
it encode a partial repair. More specifically, a pair of updates
(ol, o′l) is a forbidden pair if

(1) There are two single updates (v.A, a, c) ∈ ol and
(v.A, a, c′) ∈ o′l, and c 6= c′; or

(2) There exists an inconsistency I ∈ I such that (a)
{ol, o′l} ⊆ UI ∩U ′I , and (b) I remains to be an inconsistency
in G⊕ (ol ∪ o′l).

The first case aims to forbid that two updates change a same
v.A to different values. The second case prevents unresolved
inconsistencies after the two updates are applied.

A set of atomic updates U ′I is a constrained vertex cover
if it is a vertex cover of H and contains no forbidden pair. We
present a sufficient and necessary condition to characterize
partial repairs with U ′I .

Lemma 3: Given an isolated CC I, a graph G ⊕ OI is a
partial repair if and only if there exists a set of atomic updates
U ′I , such that

⋃
ol∈U ′I o

l ⊆ OI , and U ′I is a constrained
vertex cover of the hypergraph H. �

We present the detailed proof in Appendix. Given Lemma 3,
procedure apxRepair (illustrated in Fig. 3) approximates the
minimum constrained vertex cover U ′I of hypergraph H. It
(1) extends layering technique [32] to H, which decomposes
atomic update cost c(ol) by factorizing it with the number
of hyperedges that ol can “cover”, and dynamically selects
promising atomic updates over multiple layers (subgraphs) of
H, and (2) integrates conflict resolving in each layer to enforce
the constraints.

Procedure apxRepair(I,UI)

1. integer i := 1; H1 := constructHyper(I,UI);
2. while Hi := (UIi , Ei) and Ei 6= ∅ do
3. γi := min{ ci(o

l)

degi(o
l)|} over all ol ∈ UIi and degi(o

l) > 0;
4. Oi := {ol : ol ∈ UIi and ci(ol) = γidegi(o

l)};
5. Oi := resolveConflict(Oi);
6. UIi+1 := refine(UIi , Ei, Oi);
7. Ei+1 := Ei \ {e : e is covered by Oi};
8. for each ol ∈ UIi+1 do
9. ci+1(ol) := ci(o

l)− γidegi(o
l);

10. Hi+1 := (UIi+1, Ei+1); i := i+ 1;
11. Set U ′I :=

⋃i
1 Oi; return OI :=

⋃
ol∈U′I o

l;

Fig. 3: Procedure apxRepair

Procedure apxRepair (line 8 of StarRepair). Given an isolated
CC I and the set of atomic updates UI , apxRepair initializes a
hypergraph H1 = (UI1 , E1) (Fig. 3, line 1) by constructHyper
(layer 1). It then performs two major steps at each layer i.
Updates selection (lines 3-5). apxRepair computes a set of
atomic updates Oi at Hi. For each atomic update ol, it
computes a degree-weighted cost γ = ci(o

l)
degi(o

l)
, where degi(o

l)

is the total number of hyperedges UI “covered” by ol, i.e.,
ol ∈ UI (line 3). It then sets Oi of layer i as the atomic
updates with smallest degree-weighted cost (line 4).

It next refines Oi by resolving forbidden pairs using a
procedure resolveConflict (line 5). For each forbidden pair
(ol, o′l) included in Oi, it removes the one with a larger
c(ol), and removes all the forbidden edges adjacent to ol. This
process repeats until Oi induces no forbidden edge.
Layer construction (lines 6-10). apxRepair then refines Hi to
Hi+1 as follows. (1) It removes unpromising updates from
UIi by procedure refine(·) (line 6), which dynamically detects
forbidden pairs given the selected updates in Oi, and removes
updates in the following order: (a) resolve forbidden pairs that
have one node in Oi; (b) remove atomic updates in Oi, and
(c) remove atomic updates with deg(ol) = 0. (2) It removes all
hyperedges covered by Oi (line 7). Moreover, it updates the
degree weighted cost for all the refined updates (lines 8-9).
Hi+1 is constructed accordingly (line 10).

The above process repeats until all the hyperedges of H are
covered (line 2). The vertex cover is U ′I =

⋃i
1Oi, and the set

of updates OI is computed as the union of all selected atomic
updates

⋃
ol∈U ′I o

l at each layer i and is returned (line 11).

Example 7: Continue with Example 6 and consider I1
and I2 of CC1. Fig. 4 illustrates an initial hypergraph H1,
which contains two hyperedges UI1 = {ol1, ol2, ol3} and UI2 =
{ol1, ol4, ol5, ol6}. Atomic updates are shown as below.

atomic updates UI costs
ol1 = {(v4.city, ‘Bristol’, ‘London’), (v1.city, ‘Manchester’, ‘London’), c(ol1) = 1.6

(v2.city, ‘Leeds’, ‘London’ )}
ol2 = {(v4.city, ‘Bristol’, ‘Leeds’), (v3.city, ‘London’, ‘Manchester’ )} c(ol2) = 1.2

ol3 = {(v0.league, ‘EPL’, vc)} c(ol3) = 1.0

ol4 = {(v4.city, ‘Bristol’, ‘London’) c(ol4) = 0.4

ol5 = {(v5.residence, ‘London’, ‘Bristol’)} c(ol5) = 0.6

ol6 = {(v5.league, ‘EPL’, vc)} c(ol6) = 1.0

apxRepair selects ol4 first, which has the minimum degree-
weighted cost γ = 0.4/1. This leads to forbidden pairs
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Fig. 4: Approximating optimal repairs (apxRepair, Example 7)

(ol4, o
l
2), which changes v4.city to different values (‘Leeds’),

and (ol4, o
l
5), which leaves I2 unresolved. Hence, ol2 and ol5 are

removed by resolveConflict. Procedure refine then refines H1

as follows. (1) Remove hyperedge UI2 , which is covered by
ol4; (2) removes zero degree nodes ol6; (3) updates costs: c(ol1)
= 1.6 - 0.4·1.0 = 1.2, and similarly c(ol3) = 0.6,; and (4) builds
H2 = (U2, E2), where has one hyperedge UI1 = {ol1, ol3} with
updated costs. I1 is then repaired by selecting ol3 in H2. This
yields a repair by applying ol3 ∪ ol4 with total cost 1.4. If ol1
is changed to {(v4.city, ‘Bristol’, ‘London’), (v2.city, ‘Leeds’,
‘Manchester’) with cost c(ol1) = 0.6, apxRepair first selects
o1 with degree-weighted cost 0.6/2 and both UI1 and UI2 are
covered, and the procedure stops after one iteration. �

Approximation. Algorithm apxRepair correctly computes a
constrained vertex cover U ′I of H ensured by resolveConflict
and refine. Given Lemma 3, G⊕OI , where OI =

⋃
ol∈U ′I o

l

is a partial repair of G w.r.t. the isolated CC I.
Let OI∗ (obtained by UI∗), be the updates that revise

G to the optimal repair w.r.t. Σ, U ′I∗ be the set of atomic
updates induced from the optimal constrained vertex cover
for H, and i = t when apxRepair terminates. Define cost
c(UI) =

∑
ol∈UI c(ol). (1) We show c(U ′I) ≤ |UI |c(U ′I∗).

Note that c(ol) =
∑t

i=1 γdegi(o
l) if ol ∈ U ′I ; and c(ol) ≥∑t

i=1 γidegi(o
l) if ol 6∈ U ′I . For each layer i, U ′I ∩ UIi

(resp. U ′I∗ ∩ UIi ) is a vertex cover of Hi. On the one
hand, c(U ′I) =

∑t
i=1

∑
ol∈U ′I∩UIi

γidegi(o
l) ≤

∑t
i=1∑

ol∈UIi
γidegi(o

l) ≤ |UI |
∑t

i=1 γi|Ei|. On the other hand,
c(U ′I∗) ≥

∑t
i=1

∑
ol∈U ′I∗∩UIi

γidegi(o
l) ≥

∑t
i=1 γi|Ei|.

Hence, c(U ′I) ≤ |UI |c(U ′I∗). (2) As OI =
⋃

ol∈U ′I o
l,

c(OI∗) ≤ c(OI) ≤ c(U ′I). For hypergraph H, c(U ′I∗) ≤
c(UI∗) ≤ |I|c(OI∗). The second inequality holds because
given a single update o, it can be repeatedly applied by at
most |UI ||I| atomic updates. Putting these together, c(OI∗) ≤
c(OI) ≤ c(U ′I) ≤ |UI |2|I|c(OI∗). As |UI | is bounded by
|Σ|, The algorithm is a |Σ|2|I|-approximation.
Complexity. apxRepair takes O(|I||Σ|2) time to construct
H1. There is at most |I| iterations. In each iteration, it
takes O(|I||Σ|2) time to select updates, and O(|I||Σ|) time
to resolve forbidden pairs. The total time cost is thus in
O(|I||Σ|2 + |I|(|I||Σ|2 + |I||Σ|)).

We present special cases for which apxRepair achieves
better approximation ratio in Appendix, e.g., 2|Σ|2.

Tractable Optimal Repairing. We also present a case when
computing an optimal repair becomes tractable.
Hyperstar Updates. For an isolated CC I, we say its atomic
updates UI is a hyperstar [23], if for every two inconsistencies
I and I ′ in I, UI ∩ UI′ equals to the same fixed Oc.

Theorem 6: There exists an algorithm that computes the
optimal partial repair in O(|I||Σ|) time for an isolated CC I,
when its atomic updates UI is a hyperstar. �

Procedure optRepair (line 7 of StarRepair). Given an isolated
CC I and its atomic updates UI as a hyperstar, optRepair
first computes the center (common subset) Oc of UI . It then
compares two sets of atomic updates, both lead to partial
repairs: (1) a singleton {ol∗}, where ol∗ has the minimum
cost in center Oc; and (2) a set of atomic updates UI∗, which
selects a least-cost atomic update olI from each set UI \ Oc

over all I ∈ I. It returns the partial repair with a smaller cost.
Analysis. The optimality guarantee can be shown by contra-
diction. optRepair takes in total O(|I||Σ|) time. Note that it
takes O(|I||Σ|) time to determine whether UI is a hyperstar.
Theorem 6 thus follows. We present detailed analysis in
Appendix.

These approximable and optimal cases are quite common:
our experiments verify that up to 64% (resp. 14%) of detected
inconsistencies bear approximable (resp. optimal) repairs over
real multirelational graphs (see Exp-2, Section VI).

V. COST-BOUNDED REPAIRING

We next introduce an algorithm to compute repairs for non-
isolated CC. Our idea is to iteratively repair CCs that connect
to fewest consistent pairs (thus are less likely to introduce new
inconsistencies) as “isolated” ones, and incrementally update
interaction graph G with new inconsistencies.

Algorithm. Procedure boundedRepair (also invoked by al-
gorithm StarRepair, line 10). maintains (a) a set of current
consistent pairs C, and (b) a tunable repair budget B (set as
|I| by default), under the intuition that the largest expected
cost is |I| (by e.g., simply repairing with “marked nulls” with
cost 1.0). It iteratively performs the following. (1) Induces
a maximal set of connected inconsistencies I ′ ⊆ I that has
the fewest adjacent consistent pairs in G. (2) Computes an
approximate (resp. optimal) partial repair for I ′ by invoking
genUpdate and apxRepair (resp. optRepair), treating I ′ as
an “isolated” CC. (3) Invokes a procedure incErrorDetect to
incrementally detect new matches and inconsistencies in the
consistent pairs that are neighbors of I in G (illustrated in
Fig. 5), and updates B, G and I accordingly. It terminates
when B is consumed.

Incremental error detection. The procedure incErrorDetect
incrementalizes its counterpart errorDetect (Section II-B) to
detect new matches and inconsistencies. An index is con-
structed by performing random walks in G and extracting
sub-expressions that best summarize the paths. incErrorDetect
then decomposes regular path queries to sub-expressions and
inquires the index. The incremental error detection is quite
effective: it improves the efficiency of errorDetect by 3.4 times
(Section VI). We present the details in Appendix.

The algorithm boundedRepair guarantees to terminate with
the following invariant for each atomic update ol: (1) if a v.A
appeared in ol is already repaired to “marked null”, it skips
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ol; or (2) ol is applied no more than k times, for a tunable
parameter k or B is consumed (see details in Appendix).

VI. EXPERIMENTS

Using real-world graphs, we experimentally verify the effi-
ciency and effectiveness of StarFD-based repairing.

Experiment settings. We used the following settings.
Datasets. We use four real-life graphs: (1) Yago1, a knowledge
graph derived from the Web, (2) Yelp2, a business review
graph with nodes as local services (e.g., restaurants, plumbers,
etc) and edges such as “likes”. (3) DBP3, a knowledge base
extracted from Wikipedia, and (4) IMDb4, a movie database
with nodes such as films and actors, and relationships such as
“directedBy”. The datasets are summarized below.

Dataset |V | |E| # node labels # edge labels avg. |fA(v)|
Yago 2.1M 4.0M 2273 33 3
Yelp 1.5M 1.6M 42 20 5
DBP 2.2M 7.4M 73 584 4
IMDb 5.9M 3.2M 158K 2 3

Error generation. Following the “silver standard” [27] as-
sumption, we consider our datasets as cleaned graphs. Fol-
lowing error generation benchmark [4], we injected errors to
each original graph G as follows. (1) We sample p1% of
the nodes in G, and for each node v, sample p2% of its
attribute to inject error. The error rate p is computed as the
fraction of the polluted node attributes to the total number of
distinct node attribute v.A in G. (2) For each sampled node
attribute v.A, we randomly injected one of the three types of
errors [4]: (1) misspells, which randomly select and replace
up to 3 characters of the string value of v.A; (2) inaccuracy,
which selects another value in the active domain adom(A) of
attribute A (values of A in G), and (3) out-of-domain, which
assigns a constant not in adom(A).
StarFD generation. We implemented an algorithm StarGen,
to generate StarFDs from clean graphs. It selected top-k1

frequent node labels (e.g. k1 = 200 in Yago) as L(uo), and
identified their candidates P (uo, G). Starting with a candidate
node, StarGen sampled its neighbors up to a certain hop (e.g.
3 in Yago) to generate top-k2 frequent paths (e.g. k2 = 5 in
Yago). The top-k2 frequent paths were converted to regular
expressions. Each star pattern was formed by a combination
of regular expressions with a center node uo. For each star
pattern, StarGen searched the (equivalent) attribute values or
node labels to generate constant and variable literals and
aggregated dependencies X → Y by the combination of
literals. This yields a StarFD for uo. We discover StarFDs

1https://mpi-inf.mpg.de/yago
2https://www.kaggle.com/yelp-dataset
3https://wiki.dbpedia.org
4https://www.imdb.com/interfaces

to cover all the polluted attributes (treated as training data),
and manually verified each StarFD to ensure its correctness.
We defer the discovery of StarFDs as future work.

Metric. Denote the attributes involved in inconsistencies as err,
the attributes updated by a repair algorithm as errr, and the
set of correctly repaired attributes as errt, which contain those
attributes reconstructed to the truth values and do not consider
“marked nulls”. We report the accuracy of the repair algorithm
as (1) precision Prec. = |errt|

|errr| , and (2) recall Rec. = |errt|
|err| .

Algorithms. We implemented the following algorithms in Java.
(1) StarRepair is the algorithm in Fig. 2 with optimized error
detection incErrorDetect; (2) to evaluate the effectiveness of
optimization, we implemented biBFSRepair, which applied
bidirectional search to evaluate regular queries [14] without
using incErrorDetect; and (3) SubIsoRepair transforms the
StarFDs in Σ to a set of GFDs Σ′, and follows StarRepair
but uses Σ′ as input constraints. For example, the StarFD ϕ2

in Example 4 is converted to 6 GFDs by SubIsoRepair. To un-
derstand the impact of repairing budget, we also implemented
an algorithm StarRepair-x%, a budgeted variant of StarRepair
that uses up to x% (x > 0) of the total repair cost as a budget.

All the algorithms measure the cost of an update o =
(v.A, a, c) with semantic distance [36], Levenshtein [11],
numerical distance [30] normalized by domain range, and
constant 1.0, when A refers to a label, a string attribute,
a numerical attribute, and the case that c is out of domain
(c /∈ adom(A)), respectively.

We conducted our experiments on Linux with Intel 2.33GHz
CPUs and 256GB memory. Each experiment was run 5 times
and the average results were reported.

Exp-1: Efficiency. As shown in Fig. 6(a), it is feasible to
repair errors in large graphs under StarFDs. On average,
StarRepair outperforms biBFSRepair and SubIsoRepair, by
3.4 times and 7.1 times, respectively. It takes on average 7
seconds for StarRepair to achieve minimum repair. StarRepair
also incurs much less cost on error detection compared with
SubIsoRepair. For example, StarMatch takes 2.3 (resp. 2.7)
seconds to identify errors over Yago (resp. Yelp), and is 10
(resp. 41) times faster than the error detection of SubIsoRepair
that performs subgraph enumeration.

We next evaluate the impact of the following factors with
default values summarized below. We use the total number of
candidates of center nodes uo, denoted as C(uo, G), instead
of the graph size, as the time cost of entity repairing is more
sensitive to C(uo, G).

Factor Yago Yelp DBP IMDb
# of candidates C(uo, G) 320K 80K 350K 210K

# of StarFDs 60 60 30 18
error rate p 0.2 0.2 0.24 0.1

budget rate x% 100% 100% 100% 100%

Varying C(uo, G). Fig. 6(b) reports the impact of C(uo, G)
over Yago. (1) While all algorithms take longer time as
more candidates are provided, they are quite feasible over
large graphs. For example, it takes up to 4.82 seconds for
StarRepair to repair entities with 400K candidates over Yago.
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Fig. 6: Efficiency of entity repairing

(2) StarRepair is the least sensitive to C(uo, G) due to
optimized error (re-)detection, while SubIsoRepair is the most
sensitive due to subgraph isomorphism test and enumeration.

Varying # of StarFDs. Varying the number of StarFDs from
10 to 60 over Yago, Fig. 6(c) shows that all algorithms take
longer time with more StarFDs due to more matches and
repairs. StarRepair is the least sensitive one due to its sub-
query optimization.

Varying p and x%. Fixing other parameters as default, we
varied the error ratio p from 0.05 to 0.25 over Yago. and
tested StarRepair-20% with 20% budget. Fig. 6(d) verifies
that all three algorithms take longer time when more attribute
values are polluted, due to more inconsistencies to be detected
and repaired. StarRepair is the least sensitive to error rate
p and is on average 2 and 5 times faster than biBFSRepair
and SubIsoRepair, respectively. We observe the error detection
cost of all the algorithms takes more fraction in the total time
for larger p, while the sub-query optimization of StarRepair
reduces cost significantly. For example, the matching time
takes on average 20%, 57%, and 71% of the total time
for StarRepair, biBFSRepair, and SubIsoRepair, respectively.
StarRepair-20% improves StarRepair on average 1.8 times
due to the cost-bounded repairing.

The results over other datasets are consistent with our
observation. We report more results in Appendix.

Exp-2: Effectiveness. Using the same settings in Exp-1, we
report the effectiveness of StarRepair and SubIsoRepair. We
omit the results of biBFSRepair as it has the same accuracy
as StarRepair. An overview of accuracy is reported as below.

Yago Yelp DBP IMDb
Algo. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.

StarRepair 0.99 0.82 0.84 0.97 0.92 0.80 0.96 0.98
SubIsoRepair 0.94 0.72 0.82 0.82 0.67 0.65 0.87 0.97

It verifies that StarRepair outperforms SubIsoRepair by gain-
ing 9% more in precision and 14% more in recall on average.
We found that SubIsoRepair can have (redundant and over-
lapped) matches returned by subgraph isomorphism, making
“marked nulls” vc easier to be selected due to smaller degree-
weighted cost. StarRepair is quite accurate over all datasets
(Prec. = 93% and Rec. = 90% on average).

Varying C(uo, G). Fig. 7(a) and 7(b) shows the precision
(resp. recall) of StarRepair is 82% (resp. 81%) on average
and outperforms SubIsoRepair in all number of candidates,
which indicates that our method is stable with data size.

Varying p and x%. Fig. 7(c) and 7(d) show the impact of
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Fig. 7: Effectiveness of entity repairing (Yago)

error rate p and budget ratio x%. The result shows both
precision and recall decrease with larger p, as more errors are
introduced by larger p. We observe the recall of StarRepair-
20% (resp. StarRepair-10%) is on average 7% (resp. 15%)
lower than StarRepair, because some errors remain unrepaired
due to early termination. StarRepair-20% (StarRepair-10%)
has precision (not shown) close to StarRepair (within 3%).

We also observe that the repairing quality benefits from
more StarFDs (not shown). We report more details in Ap-
pendix.

Error distribution. We also evaluate the impact of the type
of errors to StarRepair. For the three types of errors, we
generate one type as major errors (70%) and the other two
as minor errors (15%). When the major errors are inaccuracy,

Yago Yelp DBP IMDb
Injected Errors Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.

misspells 0.98 0.92 0.88 0.97 0.92 0.81 0.96 0.92
inaccuracy 0.94 0.80 0.83 0.92 0.90 0.79 0.91 0.91

out-of-domain 0.99 0.93 0.91 0.98 0.94 0.81 0.94 0.99

StarRepair has on average 6% lower precision and 4% lower
recall, compared with misspells and out-of-domain errors. We
found that the exact “true” value of inaccurate attributes is
relatively more difficult to be recovered exactly by choosing
repairs with the smallest editing cost. For misspells and out-
of-domain errors, the editing costs are closer to either 0 or
1, respectively. This makes StarRepair be easier to prioritize
updates precisely via cost models and guarantees optimality.
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We also observe that isolated CCs (for apxRepair and
optRepair) are quite common. For example, among all de-
tected inconsistencies, 37%, 78%, and 54% (resp. 5%, 14%
and 5%) are isolated CCs (resp. permit optimal repairs) over
Yago, Yelp and IMDb, respectively (see details in Appendix).

Exp-3: Case Study. Fig. 8 illustrates how StarFDs can be used
to repair errors and benefit tasks such as fact checking [27].
(1) A StarFD ϕ5 = (P5(uo), X5 → Y5) posed on DBP states
that “if a school uo in U.S.A is located in a city u5 by itself
or through its building, or it has a campus in the suburb
of the city, the school’s county should be same as the city’s
county.” ϕ5 corrects 14 such errors in DBP. The county of
British International School of Houston is wrongly associated
to “United States” and is repaired to ‘Harris’ by ϕ5. Such
repair further benefits fact checking [22], [27], which predicts
the missing links. A fact checking rule [22] states “if a school
uo owns a campus u1, which is locatedIn the city u2, and if
uo.county equals to u1.county, then there is likely a link <uo,
isLocatedIn, u2>.” This rule can only be applied when the
county of BISH is repaired by ϕ5, which in turn identifies a
missing link <BISH, isLocatedIn, Houston> in G5.
(2) A second StarFD ϕ6 = (P6(uo), X6 → Y6) posed on Yago
states that “If a person uo is a politician or president of U.S.A.
and married to person u7, then the child of u7 is also the
child of uo.” This constraint detects and repairs more than
100 errors. We illustrate one such repair in Fig. 8.

VII. CONCLUSIONS

We have proposed a class of constraints StarFDs, to identify
errors with star-structured regular path patterns. We established
the complexity of its fundamental problems e.g., validation and
satisfiability. We introduced a dichotomous repairing frame-
work to resolve erroneous attribute values using StarFDs. Our
experimental results have verified the effectiveness of StarFD
techniques. One topic in future is to investigate StarFDs with
general patterns and edge updates. Another topic is to discover
and infer StarFDs in large graphs, and to learn high-quality
and informative StarFDs with user feedback.
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APPENDIX A: PROOFS AND ALGORITHMS

Extension of StarFDs normal forms (Section II-A). For
those StarFDs that (a) Y is a set of literals and (b) X =
∅ or Y ⊆ X , we show they can be extended by the nontrivial
normal forms.
Case (a), assume there exists a StarFD ϕ = (P (uo), X → Y )
in Σ, where Y contains a set of literals (in non-normal form),
say Y = {l1, l2, . . . , ln}, we construct a set of StarFDs Σϕ

that contains StarFDs in the form of ϕi = (P (uo), X → li)
(i ∈ [1, n]). We show that G 6|= ϕ if and only if G 6|= Σϕ.

For the “if” direction, assume G 6|= Σϕ. There exists
a match P (G, vo) and a StarFD ϕi = (P (uo), X → li),
such that, P (G, vo) |= X and P (G, vo) 6|= li. This implies
P (G, vo) 6|= Y , which further implies P (G, vo) 6|= ϕ. Hence,
G 6|= ϕ.

For the “only if ” direction, assume G 6|= ϕ. There exists
a match P (G, vo), such that P (G, vo) 6|= ϕ, which means
P (G, vo) |= X and P (G, vo) 6|= Y . There exists an literal
li ∈ Y such that P (G, vo) 6|= li. Hence, P (G, vo) 6|= ϕi and
further G 6|= ϕi, and thus G 6|= Σϕ.

Putting these together, we have G 6|= ϕ if and only if G 6|=
Σϕ. Equivalently, we can say G |= ϕ if and only if G |= Σϕ.
Hence, one can construct a set Σ′, which is the union of all
Σϕ for each ϕ ∈ Σ. Σ′ contains StarFDs that are all in normal
form, and graph G has equivalent satisfiability over Σ and Σ′.
Case (b), for those trivial StarFDs that has X = ∅, we trivially
assume G |= X and enforce each match P (G, vo) by Y
literals, and keep those enforced values unchanged during the
repairing algorithm, which is controlled by forbidden pairs
(Section IV). For those trivial StarFDs ϕ that has Y ⊆ X , G
always satisfies ϕ. Because if G |= X but G 6|= Y , as Y ⊆ X ,
it implies G 6|= X , which is a contradiction. Hence, G always
satisfies these ϕ. We obtain a set of Σ′ by removing all these
trivial ϕ, Graph G has the same satisfiability over Σ and Σ′.

Procedure StarMatch. Given a query Qi(uo) that computes
matches for ep = (uo, u) with regular expression r, StarMatch
initializes Pi(uo, G) (resp. Pi(u,G)) with the candidates of uo
(resp. u). It then follows regular path query processing [33] to
(1) construct a query automata, and (2) perform consecutive
regular reachability tests from candidates of uo and each
u guided by the automata. This can be implemented by
performing |Pi(uo)| rounds of (bi-directional) breadth first
traversal (BFS) over the graph.
Proof of Theorem 2. We show StarFDs satisfiability is NP-
complete.

(1) To see the upper bound, we show there exists an NP
algorithm to check the satisfiability. Given a set of StarFDs
Σ, we identify all the attributes involved in the literals of Σ
as A, and all the edge labels involved in fR as R. Note that
the domain of attributes in A may be finite or infinite. The
algorithm first guesses a match P (Σ) as follows. For each
StarFD ϕ = (P (uo), X → Y ) ∈ Σ, it first guesses a star
match P (vo, T ) by (a) generating a tree T rooted at a node

vo, such that for each leaf v, there is a path from vo to v with
edge labels from R; and (b) assigns for node vo (resp. each
leave node v), a tuple fA(vo) (resp. fA(v)) with attributes
drawn from A and values drawn from its domain. It then
verifies whether the set P (vo, T ), which contains (vo, v) with
v ranges over the leaves, is (a) a star match of P in T , and (b)
P (G, vo) |= ϕ. If there exists a match for each ϕ that satisfies
both conditions, it finds a model G =

⋃
Ti where each tree Ti

is generated for ϕi ∈ Σ, such that G |= Σ. As the verification
is in polynomial time, the above process is an NP algorithm.
This verifies that the problem is in NP.

(2) To see the lower bound, we construct a reduction from the
satisfiability problem of conditional functional dependencies
(CFDs) [13], which is known to be NP-hard. A CFD ϕc is
a pair (XA → YA, Tp) where (a) XA and YA are two sets
of attributes from schema U , and (b) Tp is a table of pattern
tuples over XA ∪ YA. For each pattern tuple tp ∈ Tp and an
attribute A ∈ XA∪YA, tp[A] is either a constant c ∈ adom(A)
(the domain of A), or an unnamed variable ’ ’. An instance I
of R satisfies a CFD ϕ: (XA → YA, Tp) if for any two tuples
t and t′ from I and each pattern tuple tp ∈ Tp, if t[XA] =
t′[XA] and both matches tp[XA], then t[YA] = t′[YA] and both
should match tp[YA].

Reduction. Given a set of CFDs Σc on a relational schema
U , the CFD satisfiability is to decide whether there is a
nonempty instance I of U such that I |= Σc. Given Σc, it
suffices to construct a set of StarFDs Σ and show that Σ is
satisfiable if and only if Σc is satisfiable. (1) Given CFD ϕc =
(XA → YA, Tp), let XA∪YA = {A1, . . . , Am}. We construct a
corresponding StarFD (Pc(uo), X → Y ) as follows. (a) The
pattern Pc contains a set of independent nodes VPc

with a
same label (EPc

= ∅), where for each pattern tuple tp ∈ Tp,
there are two distinct nodes vtp and vt′p in VPc . (b) For each
pattern tuple tp ∈ Tp and each attribute Ai in XA ∪ YA, if
A ∈ XA and tp[A] = ‘ ’ (resp. tp[A] = c), we add a literal
vtp .Ai = vt′p .Ai (resp. two literals vtp .Ai = c and v′tp .Ai =
c); Y is constructed along the same line for attributes in YA.
This construction generates a set of StarFDs Σ in polynomial
time. (2) We can verify that Σc is satisfiable if and only if
Σ is satisfiable. Indeed, assume an instance I |= Σc, then a
graph G can be constructed where for each tuple t ∈ I , there
is a node vt such that fA(vt) = t, thus G |= Σ. Similarly, if
a graph G |= Σc, then an instance I can be constructed by
taking all node tuples into a table, which ensures I |= Σ. As
CFDs satisfiability is NP-hard, StarFDs satisfiability is also
NP-hard. Theorem 2 thus follows.

The implication of StarFDs. Given a set of StarFDs Σ and
a StarFD ϕ, the implication problem is to decide whether Σ
entails ϕ, denoted as Σ |= ϕ, i.e., for all graph G, if G |= Σ,
then G |= ϕ.

The problem can help analyze StarFDs and reduce redun-
dancy in Σ. To study this problem, we need the following
notions.

Containment of star patterns. A star pattern P (uo) = (VP ,
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EP , LP , fR) contains another star pattern P ′(u′o) = (V ′P , E
′
P ,

L′P , f
′
R), if there exists an injective mapping h, such that, (1)

for each edge e′p = (u′o, u
′) ∈ E′P , h(e′p) is an edge ep =

(uo, u) ∈ EP ; (2) LP (uo) = L′P (u′o) and LP (u) = L′P (u);
and (3) their regular languages are equivalent: L(f ′R(e′p)) =
L(fR(ep)).

We have the following observation: if P ′(u′o) is contained
by P (uo), for any graph G and any match P (G, vo), P ′(G, vo)
is a match of P ′(u′o) and P ′(G, vo) ⊆ P (G, vo). This is
because for each edge (u′o, u

′) in P ′(u′o), and its mapped edge
(uo, u) in P (uo) through mapping h, we have P ′(u′, G, vo)
= P (u,G, vo), which preserves both the node labels and the
regular expressions. Note that the condition L(f ′R(e′p)) =
L(fR(ep)) is necessary to ensure P ′(G, vo) ⊆ P (G, vo)
for all graphs G. If not, there exists a word w either in
L(fR(ep)) \ L(f ′R(e′p)) or in L(f ′R(e′p)) \ L(fR(ep)). For the
former case, i.e., w is in L(fR(ep)) but not in L(f ′R(e′p)),
one can construct P (G, vo) that only contains paths with
concatenated string w, such that P ′(G, vo) is not a match of
P ′(u′). For the latter case, i.e., w is in L(f ′R(e′p)) but not
in L(fR(ep)), one can construct two matches P (G, vo) and
P ′(G, vo) such that P ′(G, vo) contains a pair (vo, v

′) not in
P (G, vo), and node vo and node v′ are connected through a
path with concatenated string w, i.e., P ′(G, vo) 6⊆ P (G, vo).

StarFDs closure. Given a set of StarFDs Σ and a StarFD ϕ
= (P (uo), X → Y ), such that P (uo) contains the star pattern
of each ϕ′ ∈ Σ, we define closure(Σ, X, P (uo)) as a set of
literals generated inductively by the following procedure.

(1) Initially, set closure(Σ, X, P (uo)) as X; and

(2) for any ϕ′ = (P ′(u′o), X ′ → Y ′) in Σ, if all literals of X ′

can be derived from closure(Σ, X, P (uo)) via the transitivity
of literal equality, add Y ′ to closure(Σ, X, P (uo)).

The above procedure can be computed in O(|Σ|2) time,
because in the worst case, it takes |Σ| rounds and in each
round one ϕ′ of Σ is selected and Y ′ is added to closure(Σ,
X, P (uo)).

Lemma 4: Given a set of StarFDs Σ and a StarFD ϕ =
(P (uo), X → Y ), Σ |= ϕ if and only if (1) Σ has a non-
empty subset of StarFDs ΣP that the star pattern of every
ϕ′ in ΣP is contained by P (uo). (2) Y ⊆ closure(ΣP , X,
P (uo)). �

Proof: We extend the FDs counterpart in relational data
(cf. [1]), coping with both star matches and value dependen-
cies.

We first show “if”. For any graph G that satisfies Σ, we have
G |= ΣP , since ΣP ⊆ Σ. We next prove G also satisfies ϕ, i.e.,
for any match P (G, vo) that P (G, vo) |= X , P (G, vo) |= Y
holds. As discussed, for any ϕ′ = (P ′(u′o), X ′ → Y ′) in ΣP ,
P ′(G, vo) is a match of P ′(u′o) and P ′(G, vo) ⊆ P (G, vo).
Since P ′(G, vo) |= ϕ′, it can be either case (a). P ′(G, vo) |=
X ′ and P ′(G, vo) |= Y ′ or case (b). P ′(G, vo) 6|= X ′. As
all the literals X ′ in P ′(u′o) can be derived by closure(ΣP ,

X, P (uo)), its match P ′(G, vo) can only belong to case (a)
above, i.e., P ′(G, vo) |= X ′. Hence, a closure also holds for
P (G, vo) and the set of matches P ′(G, vo), in the induced
subgraph by match P (G, vo). As Y ⊆ closure(ΣP , X, P (uo)),
P (G, vo) |= Y can be derived, which further implies G |= ϕ.

For the “only if” direction, we prove by contradiction. Still,
assume we have any graph G that satisfies Σ. First, if ΣP =
∅, i.e., no P ′(u′o) is contained in P (uo). We construct G′ by
adding a subgraph g to G, such that (1) g is an individual
component, (2) g contains a match P (g, vo) 6|= ϕ for P (uo)
and (3) g only contains regular paths that can be matched
to the edges in P (uo). Clearly, for any P ′(u′o), g does not
contain any match P ′(g, vo), because P ′(u′o) is not contained
in P (uo), i.e., there exists an edge (u′o, u

′) that does not
have matched paths in g. Hence, G′ |= Σ but G′ 6|= ϕ,
which contradicts to Σ |= ϕ. Second, assume ΣP 6= ∅ but
Y 6⊆ closure(ΣP , X, P (uo)). Without losing generality, we
pick any match P (G, vo) |= X , which is also a superset
for each match P ′(G, vo) |= X ′. As Y cannot be derived
from closure(ΣP , X, P (uo)), there exists a node v matched
to u in Y , such that adding or modifying its attribute leads
to P (G, vo) 6|= Y but P ′(G, vo) |= Y ′ still holds for each
ϕ′ ∈ ΣP . We can obtain G′ by applying the changes to G,
accordingly. Clearly, G′ |= ΣP but G′ 6|= ϕ, which contradicts
to Σ |= ϕ.

This completes the proof of Lemma 4. �

Proof of Theorem 3. We show the complement problem of
StarFDs implication is NP-complete, i.e., determining whether
Σ 6|= ϕ is NP-complete. According to Lemma 4, Σ 6|= ϕ is
equivalent to ΣP = ∅ or Y 6⊆ closure(ΣP , X, P (uo)). To prove
the upper bound, we show the decision of Σ 6|= ϕ is in NP, by
the following algorithm. (1) For each ϕ′ in Σ, guess a mapping
h from the pattern P ′(u′o) of ϕ′ in Σ to P (uo), and moreover,
for each edge e′p of P ′(u′o) and its mapped edge ep in P (uo),
guess a word w. (2) For each guessed word w associated with
e′p of P ′(u′o) and ep of P (uo). check whether w matches
fR(ep) but does not match f ′R(e′p) or it matches f ′R(e′p) but
does not fR(ep). If so, P ′(u′o) is not contained by P (uo). If
every P ′(u′o) is not contained by P (uo), the algorithm outputs
“Yes” because of ΣP = ∅. (3) Otherwise, compute closure(Σ,
X, P (uo)) and check if Y is in it. If not, the algorithm outputs
“Yes” because of Y 6⊆ closure(ΣP , X, P (uo)). If yes, the
algorithm outputs “No”. According to Lemma 4, the output
is the answer of whether Σ 6|= ϕ. Step (2) can be computed
in PTIME, because determining whether a word w matches
a regular expression r can be achieved by first converting the
regular expressions into NFAs and then partially evaluating the
word w on-the-fly. Step (3) can be computed in PTIME, which
is because the closure construction is in O(|ΣP |2). Hence,
determining whether Σ |= ϕ is in coNP.

To prove the lower bound, we show a reduction from the
non-equivalence problem of two regular expressions without
Kleene star, which is NP-complete (cf. [19]), i.e., given two
regular expressions r and r′ without Kleene star, decide
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whether L(r′) 6⊆ L(r).

We construct two star patterns from r′ (resp. r) as follows.
P ′(u′o) (resp. P (uo)) contains one edge (u′o, u

′) (resp. (uo, u))
that is assigned by regular expression r′ (resp. r). We keep all
node labels to be same. Further, we construct two StarFDs ϕ′

= (P ′(u′o), X ′ → Y ′) and ϕ = (P (uo), X → Y )), where X ′

(resp. X) contains a literal u′o.A1 = c1 (resp. uo.A1 = c1),
and Y ′ (resp. Y ) contains a literal u′.A2 = c2 (resp. u.A2

= c2). A1 and A2 (resp. c1 and c2) are distinct attributes
(values in adom). Lastly, we construct Σ as {ϕ′}. Clearly,
ΣP is Σ and closure(ΣP , X, P (uo)) contains the only literal
in Y . Therefore, Σ 6|= ϕ if and only if r′ is not equivalent to r.
As determining the non-equivalence of two regular expressions
without Kleene star is NP-complete (cf. [19]), hence, it is NP-
hard to decide Σ 6|= ϕ.

Consider all above, the implication problem of StarFDs is
coNP-complete. This completes the proof of Theorem 3.

Proof of Theorem 4 (1). We first show that deciding whether
a repair O is under a given budget B is NP-complete for Σ
with only constant (resp. variable) StarFDs.

(1) The problem is in NP. Indeed, a nondeterministic PTIME
algorithm first guesses a set O of updates (v.A, a, c) by
selecting v.A and drawing a value c 6= a from adom ∪ V
(Section III), and then verifies if (a) c(O) ≤ B and (b)
G⊕O |= Σ, by applying O to G and invoking the validation
algorithm in Section II-B (Theorem 1).

(2) We next show the lower bound by a reduction from
the minimum dominating set problem (MDS), which is NP-
hard [5]. Given a graph H = (VH , EH), a set D ⊆ H is a
dominating set if every node in VH \D is adjacent to at least
one node in D. MDS is to find a dominating set D∗ with the
minimum size.

Reduction. Given a graph H with node set VH = {1, 2, . . . , n}
and edge set EH ⊆ VH × VH , we construct a graph G =
(V,E, L, fA) and a set Σ of StarFDs with only constant (resp.
variable) StarFDs as follows. (a) For each i ∈ VH , create
a node vi ∈ V , and for each (i, j) ∈ EH , create an edge
(vi, vj) ∈ EH . We omit edge directions, because the conclu-
sion is intact for arbitrary directions. (b) Each node vi ∈ V has
a distinct label L(vi) = Li and fA(vi) = {(vi.Ai, 0)} (resp.
fA(vi) = {(vi.Ai, 0), (vi.A

′
i, i)}). (c) For each node vi ∈ V ,

construct a StarFD ϕi = (Pi(ui), Xi → Yi), such that 1)
Pi(ui) is a star pattern that matches the subgraph P (G, vi)
induced by vi and all its adjacent nodes vj ; 2) Yi contains a
literal l : ui.Ai = i (resp. l : ui.Ai = ui.A

′
i) and Xi contains

a set of literals l : uj .Aj = 0 (resp. l : ui.Ai = uj .Aj) over
all adjacent nodes vj of vi. The reduction is in polynomial
time.

Assume w.l.o.g. that c(o) = 1. We next show that the
optimal dominating set D∗ of H can be computed in PTIME
if and only if the optimal repair O∗ can be computed in
PTIME, and moreover, |D∗| = c(O∗). (1) Assume D∗ is
computed in PTIME. A repair O can be constructed as

follows: for each vi in D, add o = (vi.Ai, 0, i) to O. Clearly,
if vi ∈ D∗, P (G′, v′i) |= Yi, and for all vj adjacent to
vi, P (G′, v′j) 6|= Xj . Clearly, this resolves all the violations
and c(O∗) ≤ c(O) ≤ |D∗|. (2) Conversely, assume O∗ is
computed in PTIME. A set D is constructed by adding i to D
for each node vi that has an attribute value vi.Ai (resp. vi.Ai

or vi.A′i) updated by O∗. If D is not a dominating set, there
exists a node vi ∈ V \D not adjacent to any node in D. Thus,
the match P (G, vi) violates ϕi = (P (ui), Xi → Yi), which
contradicts to that O∗ is a repair. Hence, D is a dominating
set and |D∗| ≤ |D| ≤ c(O∗).

The above construction verifies that the minimum repair
is NP-complete for Σ with only constant (resp. variable)
StarFDs, and |D∗| = c(O∗).

Proof of Theorem 4 (2). We show the hardness of ap-
proximation with the same reduction from MDS as in the
prove of Theorem 4 (1), and show the construction is an
approximation preserving reduction [32]. Assume we have
an c log(n)-approximation repair O for any c > 0 of the
optimal repair O∗ for Σ with only constant (resp. variable)
literals, i.e., c(O) ≤ (c log(n))c(O∗). Let D and D∗ are
generated from i for all vi with updated attributes in O and O∗,
respectively. Because the number of updates is greater than the
number of nodes with updated attributes, |D| ≤ |O| and thus
|D∗| ≤ |D| ≤ |O| ≤ (c log(n))|O∗| = (c log(n))|D∗|, which
contradicts to that MDS cannot be apprixmable within c log(n)
for some c > 0 [5]. Hence the entity repair problem cannot
be arbitrarily approximate within c log(n) for any c, and it is
therefore NP-hard to approximate within a constant factor.

α-approximation partial repairs. We first show an inde-
pendence property ensured by partition, which states that
repairs of isolated CC can be independently computed without
incurring new inconsistencies, and their quality of each partial
repair carries over to the complete repair of G. Recall the
notion of partial repairs (Section III). Given a set of incon-
sistencies I, the optimal partial repair of G w.r.t. I , denoted
as GI∗ = G ⊕ OI∗, has the minimum update cost among
all partial repairs. A partial repair GI = G ⊕ OI is an α-
approximate partial repair (α ≥ 1), if c(OI) ≤ α · c(OI∗).
An α-approximate repair G′ is defined similarly, when I =
I(Σ, G).

Proof of Lemma 2. (1) For any inconsistency I =
(P (G, vo), ϕ) and any atomic update ol ⊆ UI generated by
genUpdate, if l = Y , then P (G⊕ ol, vo) |= l; if l ∈ X , then
P (G⊕ ol, vo) 6|= l. Thus G′I = G⊕ ol is a partial repair of G
w.r.t. I . (2) For any partial repair G′I = G⊕OI , we show there
exists such U ′I by construction. Initially, for each I in I, set
UI as ∅; and for each l in X ∪Y of I , set ol = ∅. Further, for
each o = (v.A, a, c) in OI , one can find those inconsistencies
I = (P (G, vo), ϕ) ∈ I, such that I has an edge with label
v.A in the interaction graph G; for each literal l: u.A = c or
u.A = u′.A′ in X ∪ Y of I , if v is a match of u (or u′), i.e.,
v ∈ P (u,G, vo) (or v ∈ P (u′, G, vo)), add o = (v.A, a, c) to
ol of UI . Next, for each I ∈ I and for each ol in UI , we verify
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whether G ⊕ ol is a partial repair of I . If not, which means
ol is either empty or it does not enforce Y (when l is Y ) or
violate X (when l ∈ X), ol is removed from UI . If yes and
l ∈ X , we further convert ol to a set of atomic updates that
minimally violate l and use them to replace ol in UI . Finally,
we generate U ′I =

⋃
I∈I UI . Clearly, OI =

⋃
U ′I . In addition,

each ol is an atomic update of an inconsistency I ∈ I, and it
is in UI by genUpdate. Hence U ′I ⊆ UI . Putting (1) and (2)
together, this completes the proof of Lemma 2.

Proof of Lemma 3. To see Only-If, According to Lemma 2,
we know that there exists U ′I , such that OI =

⋃
U ′I and

U ′I ⊆ UI . We show U ′I is a constrained vertex cover of H.
(a) Assume U ′I is not a vertex cover of H, then there exists
an inconsistency I ∈ I that remains to be inconsistent in G′I .
(b) Assume there exists a forbidden pair (ol, o′l) in U ′I that
updates a same node attribute v.A to different values (case
(1)), or does not eliminate inconsistencies (case (2)). Both
cases lead to a contradiction that G′I = G ⊕ OI is a partial
repair. The If condition can be verified by showing that G′I

= G ⊕ OI |= ϕ for each ϕ over all its inconsistencies I =
(P (G, vo), ϕ) ∈ I. Given a constrained vertex cover U ′I of
H, as there is no forbidden pair, each v.A of u is changed to
a same value (case (1)), and thus OI =

⋃
U ′I can be applied

to G to obtain G′I . Assume there exists an inconsistency I
= (P (G, vo), ϕ) ∈ I, such that I ′ = (P (G′I , vo), ϕ) is still
an inconsistency, after applying the updates OI . The atomic
updates that cover UI are UI ∩ U ′I . As applying any one
atomic update ol of UI leads to a partial repair G′I = G⊕ ol
w.r.t. I (Lemma 2). Hence, UI ∩ U ′I contains at least two
atomic updates ol and o′l, which form a forbidden pair. This
contradicts to the assumption that there is no forbidden pair (as
U ′I is a constrained vertex cover). Putting all these together,
this completes the proof of Lemma 3.

Complexity of the algorithms. Our entity repair algorithms
are related to the graph size (|V | and |E|), the number of rules
(denoted as card(Σ)), and the pattern size |P | and the number
of literals |X ∪ Y | in each rule. We define the sizes as the
following table and adopt encoding sizes for |ϕ| and |Σ| to
simplify complexity analysis.

symbols notations
dϕ the maximum length of regular expressions in ϕ
|P | star pattern size, equal to |EP |dϕ

|X ∪ Y | number of literals
card(Σ) the carnality of Σ, i.e., number of rules
|ϕ| encoding size of ϕ, |ϕ| = |P | + |X ∪ Y |
|Σ| encoding size of Σ, |Σ| =

∑
ϕ∈Σ |ϕ|

Without specification, all the size definitions in this paper
follow the table above.

Better approximations (Section IV-B). We show three spe-
cial cases when the optimal partial repair of CC I can be better
approximated, as illustrated in the following table.

Case CCs I approximation ratio
(1) Every ϕ ∈ Σ has a constant literal Y 2|Σ|2
(2) Any v.A connects at most ∆ pairs 2∆|Σ|
(3) Every update o is contained by one atomic update ol 2|Σ|

For example, denote ∆ as the largest number of con-
nected pairs at node attribute v.A (see interaction graphs;
Section IV-A), optimal repairs can be approximated within
2∆|Σ| due to a better approximation of vertex cover of the
hypergraph H.

Optimization (Section V). boundedRepair redetects new
inconsistencies (line 13 in Fig. 11), by invoking StarMatch
iteratively. There is a need to further reduce the cost of de-
tection. StarMatch optimizes the reachability tests for regular
expression r by referring to a regular path index as follows.

(1) We perform traversals from nodes in G via e.g., random
walks and construct small summary regular expressions that
encode the walks up to d hop. We index such expressions,
where each entry of the index with expression ri is a set of
source and target nodes in G, such that for each node s in the
source (resp. each node t in the target set), there exists at least
a node t in the target set (resp. at least a node s in the source
set), such that s can reach t (resp. t can be reached by s) via
a path with labels satisfying ri.

(2) Given regular expression r, we decompose r to concate-
nations of sub-expressions r1 · r2 · · · rm, where each sub-
expression has length up to d. Whenever a sub-expression ri
has a hit by the index, we transform expensive reachability test
to cheaper set intersection, by consulting the source and target
sets. The matching process can be optimized even better when
multiple star patterns from StarFDs Σ involve more common
regular expressions.

(3) When the label of a node v is changed, a match P (G, vo)
containing v may be invalid, but a potentially new match
P (v′o, G) may be introduced. Hence, there can be repeated
regular queries r for the same node v. We dynamically
maintain a cache to bookkeep the answers of regular queries
v, without specifying node labels. Given a regular expression
r to test for v, incErrorDetect first looks up the cache to see if
r is evaluated before. If so, fetch the answers from the cache.
Otherwise, kickstart the StarMatch for v.

Procedure genUpdate.
Complexity. In worst case, it takes O(|I||ϕ||V 2|adom|) time
to generate all updates, This is because for each I ∈ I and
for each literal l in ϕ of I , it takes up to |V |2 time to generate
distinct equivalent classes and find the value in least cost in
|adom| for each class.

Procedure isIsolated. isIsolated verifies whether a given CC
is isolated. For each inconsistency I ∈ I, it iterates consistent
pairs (P ′(G, vo), ϕ′) that are connected to I in G, and for all
node attributes v.A they are connected at, it verifies the three
cases by the definition of isolated CCs. The above process is
in polynomial time in the size of G and G. In the worst case, it
takes O(|I||VG ||V ||ϕ|) time. This is because for each I ∈ I,
there are at most O(|VG |) consistent pairs adjacent to |I|; and
for each literal l in ϕ, it takes |V | to verify.

Procedure apxRepair

Correctness. apxRepair correctly computes a constrained ver-
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Procedure optRepair(I,U ′I)

1. set Oc :=
⋂

I∈I U
I ; /* compute the center of hyperstar UI */

2. set ol∗ := arg minol∈Oc
c(ol); set OI∗a := ∅;

3. for each I ∈ I do
4. olI := arg minol∈UI\Oc

c(ol);
5. OI∗a := OI∗a ∪ {olI};
6. if c(ol∗) < c(

⋃
OI∗a ) return ol∗;

7. else return
⋃
OI∗a ;

Fig. 9: Procedure optRepair

tex cover OI of H by an induction on layer i. Indeed, it
preserves two invariants at each layer i: (1) at least a hyperedge
E is covered by some atomic update in Oi, guaranteed by
update selection; and (2) there exists no forbidden pairs
in
⋃i−1

0 Oi, ensured by resolveConflict and refine. When it
terminates, OI is a constrained vertex cover. Given Lemma 3,
G⊕OI is a partial repair of the isolated CC I. Note that each
hyperedge E contains at least one “marked null” operator at
iteration i due to genUpdate, which cannot be eliminated by
resolveConflict and refine. Otherwise, if any “marked null”
already selected in OI , the hyperedge E is already consistent
and does not appear at iteration i.

Procedure isHyperStar (Section IV-B). Assume I contains a
set of inconsistent pairs {I1, I2, . . . , In} (n = |I|), and their
atomic updates are UI = {OI1

a , O
I2
a , . . . , O

In
a } by genUpdate.

Procedure isHyperStar can verify UI is a hyperstar by the
following procedure. (1) If |I| = 1, UI is a hyperstar and Oc

= OI1 . (2) If |I| ≥ 2, Oc is initialized as OI1 ∩OI2 . Then, for
each i = 3, 4, . . . , n (if n ≥ 3), Oc is compared with Oc∩OIi ,
and check whether they are equal. If not, UI is not a hyperstar.
Otherwise, if Oc and Oc ∩OIn are equal in the last iteration,
UI is a hyperstar and Oc is returned. Thus, there is |I| loops,
and each loops computes the Oc∩OIi and compare it with Oc,
both in time |OI |, the maximum hyperedge size. Hence, the
time complexity of checking hyperstar is O(|I||OI |). We next
estimate |OI | in worst case. For each pair I = (P (G, vo), ϕ),
there are O(|Σ|) nodes u in P (uo), and each u need O(|V |+
|E|) time to find all matches v, for example, when G and Σ
only contain wild card labels “ ” on nodes and edges. Each v
at most appears in O(|Σ|) literals, and each literal generates
one update of v. Consider all above, the total time complexity
is O(|I||Σ|2(|V |+ |E|)).

Procedure optRepair

Correctness. First, both {ol∗} and UI∗ lead to a partial repair
for I. Indeed, (a) applying {ol∗} ∈ Uc alone can repair all
inconsistencies given Lemma 2; and (b) applying each update
olI in UI∗ repairs exactly one inconsistency; thus applying UI∗
repairs all inconsistencies in I. Second, assume there is a third
partial repair U ′I with a cost smaller than {ol∗} and UI∗. This
indicates that either (a) ol∗ is not the update with the least cost
in Uc (if U ′I ∩Uc 6= ∅), or (b) at least one inconsistency is not
repaired (if U ′I∩Uc = ∅). Both contradict to our construction.

Complexity. It takes O(|UI |) time to compute Uc and construct
{ol∗} and UI∗. As |UI | is at most |I||Σ||adom|, optRepair
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Fig. 10: Optimal repair (optRepair Example 8)

takes O(|I||Σ||adom|) time. Theorem 6 thus follows.

Example 8: Fig. 10 illustrates a hypergraph H with hyper-
edges UI1 , UI2 , and UI3 . The center Uc is {ol1, ol2}. ol∗ =
ol1 ∈ Uc with cost 0.3. UI∗ = {ol3, ol5, ol6} with cost 1.3.
optRepair thus computes repair by applying ol1. �

Analysis. optRepair takes in total O(|I||Σ||adom|) time. Note
that it takes O(|I||Σ|2(|V |+ |E|)) time to determine whether
UI is a hyperstar. Theorem 6 thus follows.

Procedure boundedRepair

Algorithm boundedRepair. The algorithm boundedRepair is
illustrated in Fig. 11 (also invoked by algorithm StarRepair). It
maintains a set of consistent pairs C, and a budget B = |I| for
repair cost. The intuition is when we repair each inconsistency
using “marked nulls”, it achieves a cost |I|, and thus we expect
a repair within |I|. It iteratively performs the following.

(1) It induces a maximal set of connected inconsistencies I ′ ⊆
I that has the fewest adjacent consistent pairs in G (line 3).
This can be computed by a neighborhood search of I ′ in G.

(2) It computes a partial repair for I ′ by invoking genUpdate,
and verifies conditions to optRepair or apxRepair accordingly
(lines 4-7), treating I ′ as an “isolated” CC. It then updates
repair budget B, and verifies whether the remaining budget is
sufficient for a trivial repair for the remaining inconsistencies
I \ I ′. If not, it will apply the trial repairs for the I ∈ I and
return (lines 8-10). Otherwise, it continues the repair process
by updating C, B and O (lines 11-12). It invokes procedure
incErrorDetect to incrementally search new star matches and
identify new inconsistencies in the neighbors of I in G, and
update G and I accordingly (line 13).

Termination. Previous work ensure termination by updating
attribute values repeatedly over (all) domain values [10]. It
is infeasible to our entity repair because adom can be very
large. Instead, we cache the applied updates in each round,
and prioritize and prune the updates by genUpdate as the
following: for any update o = (v.A, a, c), if either (1) v.A
is already “marked null”, or (2) c is repeated applied for v.A
(to a certain time), then prune o.

Early termination. In practice, the budget B can be a tuneable
parameter by users. such that boundedRepair terminates early.
We see that it can strike the balance between efficiency and
accuracy. Detailed results are reported in Section VI.

Analysis. Once a “marked null” update is applied, the pairs
it covers are no longer inconsistent. Moreover, the number of
searched pairs are bounded by |G|, and each pair has finite
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Procedure boundedRepair(I,G)

1. set O := ∅, set C := ∅; B := |I|;
2. while I 6= ∅ do
3. Induce I ′ ⊆ I that has fewest adjacent consistent pairs;
4. UI′ := genUpdate(I ′);
5. if UI′ admits a hyperstar update then
6. O′ := optRepair(I ′,UI′ , C);
7. else O′ := apxRepair(I ′,UI′ , C);
8. if B − c(O′) ≤ |I \ I ′| then
9. O := O ∪ {o : o is atomic update for each I ∈ I};
10. return O;
11. O := O ∪O′; C := C ∪ I ′;
12. B := B − c(O′);
13. incErrorDetect(I, I ′,G);
14. return O;

Fig. 11: Procedure boundedRepair

updates, thus boundedRepair will stop either when 1) I = ∅
in the main loop (line 2 Fig. 11), or it uses up all generated
updates (still I = ∅).

In the worst case, the algorithm has |G| loops, and each
loop invokes optRepair and apxRepair. Hence, the time is
O(|G||Σ|2 + |G|2|Σ|2 + |G|2|Σ|).
Bounded repair cost. There always exists a trivial repair using
“marked null” with cost bound |G|, and |G| is bounded by
matches, denoted as N . Hence, we have c(OI∗) ≤ N . We also
know c(OI) ≤ |UI |2|I|c(OI∗) for apxRepair. Denote |UI |m
as the largest size of atomic updates for an inconsistent I .
boundedRepair thus ensures a bounded repair cost as follows.

Lemma 5: The cost of StarRepair is bounded by |OI |mN . �

One can verify that |OI |m can be achieved, when there is
only one “isolated” I ′ of size G.

Example 9: Continue Example 6. Assume v3.city = ‘Bris-
tol’, v4.city = ‘London’, and budget B = 1.5. Fig. 5 il-
lustrates boundedRepair. I1 is marked in black (resp. I2
is marked in white) is an inconsistency (resp. consistent
pair). boundedRepair selects and repairs I1 by applying ol1 =
{(v4.city, ‘London’, ‘Bristol’), (v2.city, ‘Leeds’, ‘Manchester’
)} with cost 0.9. This repairs I1, while I2 becomes a new
inconsistency due to ol1, as detected by incErrorDetect. The re-
pairing of I2 by applying ol2 = {(v4.city, ‘Bristol’ ‘London’)}
with cost 0.5 makes I1 inconsistent again. boundedRepair
finds that ol1 (cached) has been applied, thus verifies the
rest updates ol3 = (v1.city, ‘Manchester’, ‘Leeds’), (v3.city,
‘Bristol’, ‘London’) with cost 0.5 and ol4 = (vo.league, ‘EPL’,
vc) with cost 1.0. As applying either one exceeds the budget,
it terminates by applying updates ol1 ∪ ol2. �

APPENDIX B: ADDITIONAL EXPERIMENTAL RESULTS

Exp-1: Additional efficiency results.
For the impact factors C(uo, G), # of StarFDs, and p and

x%, the results of efficiency over other datasets are consistent
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Fig. 12: Additional efficiency results of entity repairing

with our observation in Fig. 6. Keeping the settings as default,
we report more results in Fig. 12(a)- 12(c).

Varying |P |. We evaluate the impact of pattern size |P |, which
is the number of regular paths times the maximum path length.
As shown in Fig. 12(d), (1) While all algorithms take longer
with larger patterns, StarRepair is still feasible: it takes 75
seconds for patterns which contain 3 regular paths and each
path has length 3. (2) StarRepair is the least sensitive to |P |.
It is on average 10 SubIsoRepair (resp. 2) times faster than
(resp. biBFSRepair).

Exp-2: Additional effectiveness results.
Figure 13 shows the additional precision results discussed

in Exp-2, for varying C(uo, G) and p over IMDb, and varying
|adom| over both IMDb and Yago.

Varying # of StarFDs. Fig. 13(a) shows that the recall in-
creases with the number of StarFDs for both StarRepair and
SubIsoRepair, due to that some errors cannot be detected with
fewer StarFDs. Still, StarRepair outperforms SubIsoRepair
on average 11.2%. The precision of StarRepair is constantly
above 0.97, which improves SubIsoRepair by 9.2% on aver-
age.

Varying |adom|. We also evaluate the impact of active domain
(Fig. 13(e)). It shows that the precision increases with larger
adom for both StarRepair and SubIsoRepair, due to that
repairing algorithms may “miss” some truth values in smaller
adom and thus apply trivial repairs vc with the highest cost.

We also observe that the isolated CCs (for apxRepair
and optRepair) are quite common. For example, among all
detected inconsistencies, 37%, 78%, and 51% (resp. 5%, 14%
and 5%) are isolated CCs (resp. permit optimal repairs) over
Yago, Yelp and IMDb, respectively.

We report the usage of apxRepair, optRepair, and
boundedRepair by StarRepair in the following table (Sec-
tion IV-B).
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Fig. 13: Additional effectiveness of entity repairing

Yago Yelp DBP IMDb
Algo. # invoke % # invoke % # invoke % # invoke %

apxRepair 28 32% 172 64% 13 5% 522 49%
optRepair 4 5% 37 14% 9 3% 58 5%

boundedRepair 55 63% 59 22% 250 92% 495 46%

It shows that isolated CCs (for apxRepair and optRepair) are
common cases, and our algorithm can effectively clean these
isolated areas that every pair is dirty.
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