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Abstract—Subgraph queries are routinely used to search for entities in richly attributed graphs e.g., social networks and knowledge
graphs. With little knowledge of underlying data, users often need to rewrite queries multiple times to reach desirable answers.
Why-questions are studied to clarify missing or unexpected query results. This paper makes a first step to answer Why-questions for
entity search in attributed graphs. We consider three common types of Why-questions: Why-not, Why, and Why-rank, which suggest
query manipulations that are responsible for user-specified missing, unexpected, and undesirably ranked entities, respectively. (1) We
approach a general query rewriting paradigm that suggests to identify desired entities that are specified by Why-questions. We
introduce measures that characterize good query rewrites by incorporating both query editing cost and answer closeness. (2) While
computing optimal query rewrites is intractable, we develop feasible algorithms, from approximation to fast heuristics, and provide
query rewrites with (near) optimality guarantees whenever possible, for Why, Why-not and Why-rank questions. We further show that
our results remain intact for Why questions that (1) request a single query rewrite to clarify multiple types of entities, and (2) variants
such as Why-empty and Why-so-many, by providing the matching algorithms. Using real-world graphs, we experimentally verify that
our algorithms are effective and feasible for large graphs. Our case study also verifies their application in e.g., knowledge exploration.
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1 INTRODUCTION

Subgraph queries have been applied to search for entities in
richly-attributed graphs e.g., knowledge bases [1] and social
networks [2]. A subgraph query Q is a graph pattern with a
designated “focus” entity uo to specify entities of interests.
Given a graph G, it returns (top k) entities Q(G) in G (w.r.t.
a ranking function) that match uo with desirable attribute
values and satisfy topological constraints.

Query processing has been extensively studied for sub-
graph queries [3]. Writing such queries is, nevertheless, a
nontrivial task for end users. With little prior knowledge of
data, users often have to revise the queries multiple times to
find desirable answers. An explain functionality supported
by query rewriting is thus desirable to help them tune their
queries towards desirable answers. Specifically, one often
want to ask the following Why-questions:
◦ Why: “why there are some unexpected entities?”;
◦ Why-not: “why certain entities are missing?”; and
◦ Why-rank: “why some entities are not ranked as desired?”

Example 1: Fig 1 illustrates a fraction of a knowledge graph
G about products of e.g., online stores [4]. Each entity
carries a type e.g., Cellphone and attributes (e.g., Price) with
corresponding values (e.g., “$250”). A user poses a query
Q with a marked node “Cellphone?” to search for Samsung
cellphones packed with color pink and carrier AT&T , with
price no more than $650. The answer Q(G) contains three
Samsung models S5, A5, and S6. To further explore desired
cellphones, the user asks the questions below.
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Fig. 1: Why, Why-not and Why-rank: product recommendation.

(1) “Why?” She observed two unexpected cellphones with
older models S5 and A5, and may ask a follow-up Why
question “Why S5 and A5 are in Q(G)?” . An answer to such
a question can be a revised query Q1 which properly
“tighten” the constraints in Q to exclude {A5, S5}.

The difference between Q1 and Q (marked as red) sug-
gests to users a new preference other than SeriesA (replaced
by an edge that specifies “Serie S”) and older (cheaper)
versions of Series S (by adding a flooring price $120).

(2) “Why Not?” She also wonders why two newer mod-
els, S8 and S9, are not included in Q(G), and asks
“Why models S8 or S9 are not returned?”. A new query Q2

that clarifies this question properly “compromise” the re-
quirement in Q to include the two entities. The difference
between Q2 and Q reveals that 1) both desired models are
more expensive than expected (as the price is relaxed to $790
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Fig. 2: Exploratory graph search by Why-questions.

in Q2), and 2) there is no pink S9 model, and no evidence
shows that they are supported by AT&T (both constraints
are removed in Q2 to suggest the necessary trade-off).
(3) “Why Rank?” Assume the matches Q(G) are ranked
by a function that quantifies the closeness between
a cellphone and the predicates on Cellphone in Q.
The user also wonders why an older model S5 is
ranked the highest in Q(G), and poses a Why-rank
question:“Why model S5 is ranked higher than S6?”. A third
query Q3 can be suggested, which ensures an answer that
reorders the cellphones to be {S6, S5, A5}. The difference
between Q and Q3 suggests that the attribute OS can be
tuned to manipulate the ranking: model S6 with a more
advanced OS version, thus is ranked higher.

Answering these Why-questions help users to clarify
and explore their needs via e.g., query autocompletion [5],
and also facilitate providers to promote best sellers [6]. 2

These motivate the need for developing effective query
rewriting techniques to answer Why- questions for subgraph
query. Given a graph G, a subgraph query Q and answer
Q(G), a set of missing entities VC (resp. a set of unexpected
entities VN in Q(G)), the problem of answering Why-not (resp.
Why) questions is to modify Q to a “query rewrite” Q′, such
that Q′(G) contains the entities in VC (resp. excludes the
entities in VN ) as much as possible. Similarly, given a set
I of ordered entity pairs, answering Why-rank questions is to
compute Q′ w.r.t. a ranking function, such that the top-k
ranked list Q′(G) satisfies the orders enforced by I .

Answering Why-questions also enables exploratory
graph search (illustrated in Fig. 2). (1) The query rewrite
Q′ can be readily suggested to enable interactive search
upon users’ feedback on undesirable answers. (2) The dif-
ference between Q′ and its original counterpart Q blends
visual querying and approximate search for large G [7]. (3)
Query rewrites support graph exploration [8] by suggesting
entities relevant to missing and unexpected ones.

Contributions. This paper nontrivially extends [9] by in-
troducing new optimization for Why/Why-Not, solutions
for a new class of Why-rank questions, and their variants
including Multi-Why, Why-empty and Why-so-many.

(1) We formalize Why-questions in terms of graph query
rewrites (Section 3.1). Given a subgraph query Q, graph G,
and answers Q(G), (a) A Why-not question aims to find
a query rewrite Q′ with answers that cover missing but
desirable entities not in Q(G); (b) A Why question finds
Q′ with answers that exclude undesired entities from Q(G);
and (c) A new class of Why-rank questions compute Q′ that
can re-rank entities with desired order.

(2) To characterize “good” query rewrites, we generalize
answer closeness and query editing cost in [9] to quantify

the closeness between new answers of query rewrites Q′

and desired ones, and Q′ to original queries, respectively
(Section 3.3). The problem is to compute a query rewrite
Q′ that maximizes answer closeness with bounded query
editing cost. We show that the problem remains to be NP-
hard for Why, Why-not and Why-rank questions.

(3) Despite the hardness, we present both approximation
algorithms that compute query rewrites with quality guar-
antees, and their faster alternatives for online data explo-
ration. The idea is to quickly identify and verify a set of
“picky” operators that can distinguish undesired matches
and desired counterparts.

(a) For Why questions, we show there is an approximation
algorithm (Section 4.1) that can achieve a guarantee 1

2 (1- 1e )-
f(ε), where f(ε) is a function determined by an estimation
error ε of the quality of query rewrites.

(b) For Why-not questions (Section 4.2), we introduce a fast
heuristic that computes high-quality query rewrites without
expensive subgraph isomorphism verification.

We further optimize these algorithms with a new strat-
egy, which incrementally estimates the quality of query
rewrites and prunes unpromising operators without enu-
meration. This improves the efficiency of answering Why
questions (resp. Why-not questions) in [9] by 23.2% (resp.
12% ) as verified in the experiment study.

(c) In addition, we study three variants of Why-questions
including: Multi-Why (with multiple search “focus”), as
well as Why-so-many (“Why there are so many entities re-
turned?”) and Why-empty (“Why no answer is returned?”),
in Sections 5.1 and 5.2, respectively. We show that our
approaches and pruning strategy readily extend to these
cases with intact performance guarantees, by presenting
detailed specifications. These are not discussed in [9].

(d) For Why-rank questions, we further develop a fast
heuristic. The algorithm dynamically tracks a mapping be-
tween applicable query manipulators and the impact of
entity ranking, and performs online pruning accordingly to
reduce verification cost.

All these algorithms incur a cost that is only determined
by Q and its answer, size of desired entities (if specified)
and editing budget, which are all small in practice.

(5) Using real-world graphs, we experimentally verify the
effectiveness and efficiency of our algorithms and new
pruning strategies (Section 7). These algorithms are feasible
for large graphs. For example, the approximation (resp.
heuristic) algorithm is 12.7 times (resp. 19.5 times) faster
compared with the exact algorithm, with up to 12% (resp.
16%) loss of quality. These algorithms also suggest prove-
nance information to “explain” query rewrites and the new
answers, as verified by our case study.

2 GRAPHS AND SUBGRAPH QUERIES

We start with the notions of graphs and subgraph queries.

Graphs. We consider a directed graph G = (V,E, L, FA)
with a finite set of nodes V , and E ⊆ V × V is a set of
edges. Each node v ∈ V (resp. edge e ∈ E) carries a label
L(v) (resp. L(e)). FA(v) is a tuple <(A1, a1),. . . ,(An, an)>,
where Ai is a node attribute, and constant ai ∈ D(Ai) is the
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value of attribute v.Ai. HereD(Ai) is a finite active domain of
Ai with a range [minD(Ai),maxD(Ai)]. It contains all the
values of v.Ai in G with node v ranges over V . In practice,
the node and edge label may represent type and relation
(predicates), respectively, and FA(v) may encode the node
properties as in e.g., social networks and knowledge bases.

We next introduce subgraph queries with output nodes to
express practical entity search in graphs.

Queries. A subgraph queryQ is a directed, connected graph
(VQ, EQ, LQ, FQ, uo), where (1) VQ (resp. EQ ⊆ VQ × VQ)
is a set of query nodes (resp. query edges); (2) For each
node u ∈ VQ with a label LQ(u), FQ(u) is a predicate that
contains a set of literals. Each literal is in the form of u.A
op c, where op is a comparison operator from the set {>
,≥,=,≤, <} and c is a constant. (3) Specifically, there is a
designated output node uo ∈ VQ.

In practice, the output node inQ indicates the “search fo-
cus”, for which the matched entities are returned as answers
of Q. Such queries are commonly used to search entities in
e.g., social networks [10] and knowledge graphs [11]. For
simplicity, we refer to subgraph query as “query”.

We use the following conventions. (1) For any literal u.A
op c in Q, c ∈ [minD(A),maxD(A)]. Indeed, literals that
enforce “out of active domain” constants either trivially fail
(for e.g.,’=’, >maxD(A), <minD(A)), or are equivalent to
their counterparts with c replaced by minD(A) (for ’>’,’≥’)
or maxD(A) (for ’<’, ′ ≤′). (2) The size of query Q (denoted
as |Q|) refers to the total number of nodes, literals and edges
of Q. We focus on queries with a single uo. Our techniques
apply to queries with multiple output nodes (Section 5.1).

Query Answer. Consider a query node u in a query Q
with label LQ(u) and predicate FQ(u). A node v in G is
a candidate of u if (1) L(v)=LQ(u), and (2) for each literal
l∈FQ(u) in the form of u.Ai op c, (v.Ai, ai)∈FA(v) and ai op
c. For example, given a literal u.Ai≤c′, then (Ai, c)∈FA(v)
and c ≤ c′, for any candidate v of u.

Given query Q = (VQ, EQ, LQ, FQ, uo) and a graph G, a
mapping from Q to G is an injective function h ⊆ VQ × V
such that (1) for each node u ∈ VQ, h(u) is a candidate of u,
and (2) for each edge e = (u, u′) in Q, e′ = (h(u), h(u′)) is an
edge in G, and L(e) = L(e′). The matches of u, denoted as
Q(u,G), refers to the set of nodes h(u) in G with h ranges
over all the mappings from Q to G. The answer of Q in
G, denoted as Q(uo, G), refers to the matches of the output
node uo of Q in G (Q(uo, G) ⊆ V ).

Top-k matches. We next consider a total order of Q(uo, G)
induced by a ranking function R(Q, v). Following top-k
selection queries [12], the functionR(Q, v) maps each match
v ∈ Q(uo, G) to a ranking score, by aggregating scores of
tuple FA(v) w.r.t. predicates FQ(uo):

R(Q, v) =
1

|FQ(uo)|
∑

l∈FQ(uo)

r(l, v.A)

where r(l, v.A) is a polynomial-time computable function
that computes a “closeness” score between predicate l =
uo.A op c and attribute value v.A. For example, r(l, v.A)
can be defined in terms of normalized Euclidean distance

Notation Description
G=(V,E, L, FA) attributed graph G

Q=(VQ,EQ,LQ,FQ,uo) subgraph query Q, with output node uo

Q(uo, G) query answer of Q in G
Qk(uo, G) top-k query answer of Q in G
(uo, VCu ) Why-not (w. missing nodes VCu )
(uo, VNu ) Why question (w. unexpected nodes VNu )
(uo, I) Why-rank question (w. ordered node pair list I)

Q′=Q⊕O A query rewrite induced by operator set O
c(O) Editing cost of operator set O
cl(O) Answer closeness for Why-questions

Nd(VNu ) d-hop neighbors of the nodes in VNu

TABLE 1: Notations

between constant c and attribute value v.A for numerical
attributes, or text similarity for string attributes [13].

Given a ranking function R, the top-k matches of a query
Q in G, denoted as Qk(uo, G), refers to the top-k matches of
uo in G ranked by R (Qk(uo, G) ⊆ Q(uo, G)).

Example 2: The query Q illustrated in Fig. 1 designates
an output node uo with label Cellphone to searches for cell
phones. Assume the closeness function r(l, v.A) is defined
as the difference between constant c in l and v.A normalized
by the range of active domain of A in G. One can verify that
the top 3 matches Q3(uo, G) = {S5, A5, S6}, where S5 has
a ranking score 650−120

839−120 = 0.737; similarly, A5 and S6 have
ranking scores 0.556 and 0.5, respectively. 2

3 WHY-QUESTIONS FOR SUBGRAPH QUERIES

3.1 Categorization of Why-Questions

Given a graph G = (V , E, L, FA), a query Q = (VQ,
EQ, LQ, FQ, uo), and answer Q(uo, G), we study three
classes of Why-questions, namely, “Why”, “Why-not”, and
“Why-rank”. These questions have counterparts for rela-
tional queries [14]–[19], and are specialized for graph search.

Why-not. A Why-not question is a pair (uo, VCu
), where

(1) uo is a designated output node of Q, and (2) VCu
⊆

V \Q(uo, G) is a set of “missing matches” of uo. It clarifies
missing answers in Q(uo, G) by asking “Why the nodes in
VCu

, are not matches of u in Q?”. In practice, VCu
can be

designated as examples [20] or by e.g., keyword search [8].

Why. A Why question (uo, VNu
) is similarly defined yet on a

set of “unexpected answers” VNu
⊆ Q(uo, G). It asks “Why

the nodes in VNu
are matches of uo in G?”

Why-rank. A Why-rank question is defined as a pair (uo, I),
where I is a set of ordered pairs. For each pair 〈vi, vj〉 ∈ I , vi
and vj are in Qk(uo, G), and R(Q, vi) < R(Q, vj). The pair
〈vi, vj〉 suggests that user expects vi to be ranked at least as
high as vj , which does not hold in the current ranked top-k
answer Qk(uo, G). The question asks “Why the node pairs in
I are not ranked as expected in Qk(uo, G)?”.

Remarks. We clarify a practical assumption that the nodes in
I are also in Q(uo, G). Indeed, for any non-matches in I , a
Why-not question can be first processed to obtain Q′ with
answers that include the nodes in I as much as possible. One
can then refine Q and I for a follow-up Why-rank question.

Example 3: The three questions in Example 1 can be ex-
pressed by a Why question (Cellphone, {A5, S5}) (Fig. 1),
a Why-not question (Cellphone, {S8, S9}), and a Why-rank
question (Cellphone, {〈S6, S5〉}), respectively. 2

Authorized licensed use limited to: Washington State University. Downloaded on December 28,2020 at 18:52:00 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3046436, IEEE
Transactions on Knowledge and Data Engineering

4

3.2 Answers for Why-Questions

We approach query rewriting to answer Why-questions for
graph search. The technique has been applied to explain
unexpected answers in relational query processing [19].

Query rewrites. We use six classes of primitive query edit-
ing operators. These operators either relax or refine search
constraints of a given query Q, for any graph.

Relaxation operators. These include:
◦ RxL (u.A op c, u.A op’ c′): relax the literal (u.A op
c)∈FQ(u) to (u.A op’ c′);
◦ RmL (u, l): remove a literal l from FQ(u); and
◦ RmE (u, u′): remove an edge e=(u, u′) in Q.

Refinement operators. These include:
◦ RfL (u.A op c, u.A op’ c′): refine a literal (u.A op c) ∈
FQ(u) to (u.A op’ c′), such that u has fewer candidates;
◦ AddL (u.A op c): add literal (u.A op c) to FQ(u); and
◦ AddE (u, u′): add a new edge e=(u, u′) . More specifi-

cally, (a) if nodes u and u′ are both in Q, AddE (u, u′)
adds a new edge with edge label; (b) assume w.l.o.g. the
node u′ is not in Q, then AddE (u, u′) creates u′ with
specific labels/literals.

We shall refer to RxL, RfL, RmL, and AddL (resp. RmE
and AddE) as node operators (resp. edge operators), as they
involve a single query node (resp. query edge).

A query rewrite Q′ of Q is a query obtained by applying
operators O to Q (denoted as Q′=Q ⊕ O). Note that the
query rewrites preserve the output node ofQ, due to unlikely
change of user’s search focus in follow-up Why-questions.

Answering Why-questions. Given Q, Q(uo, G) and G, a
query rewrite Q′ = Q⊕O is an answer
◦ for a Why-not question (uo, VCu

), if Q′(uo, G) ∩ VCu
6=

∅, i.e., at least a missing match is introduced by Q′,
◦ for a Why question (uo, VNu

), if VNu
\ Q′(uo, G) 6= ∅,

i.e., at least an undesired match is removed from the
match list, and
◦ for a Why-rank question (uo, I), there is a pair 〈vi, vj〉 ∈
I , such that R(Q′, vi) ≥ R(Q′, vj), i.e., the order of vi
and vj is “reversed” as requested.

Query rewrites provide a natural way to explain an-
swers. The editing operators that modify Q to Q′ suggest
query manipulations that are responsible for “missing”,
“unexpected”, or “undesirably ranked” matches.

The capacity of query operators and their impact to the
matches has been clarified by the following property.

Lemma 1: Given a query Q with output node uo, for any query
rewrite Q′=Q⊕O and any graph G, Q(uo, G) ⊆ Q′(uo, G)
(resp. Q′(uo, G) ⊆ Q(uo, G)), if O contains relaxation (resp.
refinement) operators only. 2

We shall use relaxation (resp. refinement) operators to
answer Why-not (resp. Why) questions. For Why-rank ques-
tions, we use both relaxation and refinement operators.

3.3 Quality Measures of Query Rewrites

A “good” query rewrite Q′ should identify desirable an-
swers as required by the Why-questions with a small dif-
ference compared with the original query Q. We extend the
closeness measures in [9] for top-k queries.

Query editing cost. We follow the intuition that the mod-
ification to more “important” fraction (closer to uo) of Q
should be more “expensive”. Given Q with output node
uo, denote the diameter of Q as dQ, the output centrality [9]
of a node u′ in Q, denoted as oc(u′), is computed as

oc(u′, uo) =
dQ

d(u′, uo) + 1

where d(u′, uo) is the distance from u′ to the output node uo.
The output centrality is a normalized closeness centrality in
terms of uo. Intuitively, the “closer” u′ to uo, the more “im-
portant” u′ is in Q (as observed in concept closeness [21]).

Given query rewrite Q′=Q ⊕ O, the cost of O, simply
denoted by c(O) (for given Q), is defined as

c(O) =
∑
o∈O

c(o),

The unit cost c(o) for a single operator o ∈ O is defined
as follows. (1) If o is a node operator posed on node
u, c(o) = oc(u, uo). (2) If o is an edge operator on edge
e=(u, u′), c(o) = min(oc(u, uo), oc(u′, uo)). (3) For operator o
as either RxL or RfL, it can be treated as “removing a literal”
(with a unit cost) and “add a new one” (that accounts for
value difference). Thus c(o) = w(o) · oc(u, uo) and w(o) =
1 + |c′−c|

maxD(A)−minD(A) , normalized by the range of D(A).

The editing cost penalizes operators that are “closer” to
the output node or introduce larger value differences on
literal constants. The smaller c(O) is, the better. Our general
cost model and techniques also apply to disconnected query
rewrites (due to RmE; see Section 4).

Answer closeness. We next extend answer closeness [9] to
top-k queries. We take a similar treatment for Why and
Why-not questions, and introduce a new closeness mea-
sure for Why-rank questions. Given Q(uo, G) and a Why-
question, the answer closeness of a query rewrite Q′ = Q⊕O,
denoted simply as cl(O), is defined accordingly as follows.
(1) For a Why question (uo,VNu),

cl(O, VNu) =
|(Q(uo, G) \Q′(uo, G)) ∩ VNu |

|VNu |
which measures the fraction of VNu

that are excluded from
Q′(uo, G); the larger, the better.
(2) For a Why-not question (uo, VCu),

cl(O, VCu) =
|Q′(uo, G) ∩ VCu |

|VCu |
which measures the fraction of new matches in VCu

that are
introduced in Q′(uo, G); the more, the better.

Quantifying “Overdo”. A query may be “overly” refined for
Why questions, thus unnecessarily excluding many matches
from Q(uo, G) that are not among VNu . Similarly, it can be
overly relaxed to introduce many matches to Q(uo, G) that
are not among VCu . To characterize the tolerance of such
overdo, we define a guard ratio guard for a set of updates O.
Specifically, for a Why question (uo, VNu),

guard(O) =
|(Q(uo, G) \Q′(uo, G)) ∩ (Q(uo, G) \ VNu)|

|Q(uo, G) \ VNu
|

Similarly, for a Why-not question (uo, VCu
),

guard(O) =
|Q′(uo, G) \ (Q(uo, G) ∪ VCu

)|
|Q(uo, G)|

Authorized licensed use limited to: Washington State University. Downloaded on December 28,2020 at 18:52:00 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3046436, IEEE
Transactions on Knowledge and Data Engineering

5

The guard ratio quantifies the fraction of the entities “unnec-
essarily” added or removed from original answer Q(uo, G),
the smaller, the better. We shall use a guard condition to
identify query rewrites Q′=Q⊕ O with guard(O) ≤ δ, for a
user-specified guard threshold δ.

Example 4: The query Q1 (Fig. 1) answers the Why
question with operators O1 = {AddL(Cellphone.Price >
$120), AddE(Cellphone,Series), AddL(Series.Serie = S)}
with answer closeness cl(O1, {A5, S5})=1. Given dQ=2 and
output node Cellphone, the total cost c(O1) is 4. Simi-
larly, we can verify that the query Q2 answers the Why-
not question with operators O2 = {RmE(Cellphone,Color),
RxL(Cellphone.price, $799), RmL(Deal, carrier)}, cost c(O2) =
4.2, and answer closeness cl(O2, {S8, S9}) = 1. 2

(3) For Why-rank, the query rewrite should ensure a ranking
that is consistent with the ordered pairs enforced by I . The
closeness can be naturally defined as cl (O,I) = |L

′|
|L| , where

L′ = {〈vi, vj〉 ∈ L |R(Q′, vi) ≥ R(Q′, vj)}. Intuitively, it
quantifies the fraction of the ordered pairs in L which are
consistently ranked among the matches identified by Q′.

Example 5: The query Q3 (Fig. 1) answers the Why-rank
question with operators O3 = {AddL(Cellphone.OS > 4.4)}.
We can verify that c(O3)=2 and cl(O3, {〈S6, S5〉})=1. 2

3.4 Answering Why-questions
Given a query Q, answer Q(uo, G) or Qk(uo, G), graph G, a
Why-question W , and an editing budget B, the problem of
answering why-question is to compute an operator set O∗:

O∗ = arg max
O:c(O)≤B

cl(O,∆)

where set ∆ refers to the missing matches VCu
, the unde-

sired matches VNu
, or the ranked pairs I to be enforced

by W as a Why-not, a Why, or a Why-rank question,
respectively. That is, it is to compute a query rewrite Q′ that
ensures an answer that is closest to the desired one specified
by W , and incurs bounded editing cost.

These problems are already nontrivial even when only
edge operators are considered.

Theorem 2: Answering Why, Why-not and Why-rank questions
are already NP-hard when only edge removing (RmE) or edge
insertion (AddE) are involved. 2

Proof: Given cost bound B and closeness threshold θ, the
decision problem is to decide whether there exists an oper-
ator set O∗ such that Q′ = Q ⊕ O∗ has editing cost within
B and answer closeness at least θ.

(1) We show a tighter lower bound for Why-not compared
with [9]: it is already NP-hard when only edge removing
is involved and queries have tree patterns. We construct a
reduction from subgraph isomorphism between a tree and
a general graph (known to be NP-hard).

Given a tree Q0 and a general graph G0 = (V0, E0, L),
we construct a new tree query Q that contains (a) two sub-
trees Q1 and Q2 that are isomorphic to Q0, and (b) a bridge
(u1, u2) that connects the root of Q1 to the root of Q2, with
a unique label r not in G, where u1 in Q1 is set to be the
output node uo of Q. One can verify that Q has a tree

pattern. We construct a graph G′ with two disconnected
components G0 and G1, where G1 is isomorphic to G0.
Clearly, Q(uo, G) = ∅. We next set constrained operators
that remove edges at unit cost, budget B = 1, C=∅, VCu

=
V0 and δ = 1

|VCu |
. To answer Why-not defined on Q, G and

VCu , one has to apply an RmE that removes the edge (u1, u2)
from Q. We can verify that Q′ obtained by removing edge
(u1, u2) answers W with closeness at least θ, if and only if
there exists at least a subgraph isomorphism from Q0 to G0.

(2) To see the hardness of answering Why questions, we
construct a reduction from k-clique problem. The following
proof is for a general case where there is no guard condition.

Given a graph G = (V,E, L), the k-clique problem is
to decide whether there exists a clique that contains k
nodes. (a) We construct a query Q0 that contains a single
independent output node uo with a unique label lo not in
G, and a sub-query Qc as a k-clique with all query nodes
associated with a label ‘ ’ that can match any node in G.
(b) We construct a graph G′ that contains a node vo with a
unique label lo not in G, graph G, and an edge from vo to
every node in G. (c) We set B=1, VNu = {vo}, δ = 1, and a
constrained operator that inserts edge only. For Q0, it has
to be a single edge insertion from uo to any node in Qc,
given B=1. We can verify that there exists a query rewrite
Q′ that answers Why question (uo, {vo}) if and only if G
does not contain a k-clique. As k-clique problem is known to
be NP-hard and APX-hard, answering Why question is also
NP-hard and APX-hard.

(3) We observe that Why-not questions are a special cases
of Why-rank where I enforces a node in VCu to be ranked
higher than at least a node from Q(G). Specifically, given
a Why-not question W1 = (uo, VCu) defined on answer
Q(G) with a closeness threshold θ, we construct a Why-
rank question W2 = (uo, I) with threshold δ′, initial query
Qr and answers Qr(Gr) as follows. (a) k = |Q(G)| + |VCu |,
Qr =Q, andGr =G. (b) We set a ranking functionR defined
on an auxiliary attribute of the nodes Q(G) ∪ VCu such that
no node in Q(G) is ranked higher than any node in VCu . (c)
θ′ = θ

|Q(G)| , and I = {(v, v′) |v ∈ VCu
, v′ ∈ Q(G)}.

Assume there exists a query rewrite Q′r for Why-rank
with closeness at least θ′= θ

|Q(G)| . As |I| = |Q(G)||VCu |, at
least θ′|I| = θ|VCu

| pairs are re-ranked to follow the order
posed by I . Given the definition of I , at least θ|VCu

| nodes
in VCu

are ranked higher than at least a node in Q(G) in the
top k=|Q(G)|+|VCu

|matches. SetQ′r =Q′. It follows thatQ′

is a solution for W1 that ensures a closeness at least θ|VCu |
|VCu |

=
θ. Similarly, a solution for W1 also reduces to a counterpart
for W2. The hardness of Why-rank thus follows. 2

4 ANSWERING WHY AND WHY-NOT QUESTIONS

4.1 Approximating Answers for Why

We present our main result for Why questions below.

Theorem 3: There is an algorithm for answering Why questions
(O∗ refers to the optimal set) which:
◦ computes an operator set O within cost B, such that

cl(O, VNu
) ≥ 1

2 · (1−
1
e ) · cl(O∗, VNu

) - 6Bε, and
◦ incurs a cost determined by Q, VNu

and B only.
where ε is the absolute error it makes in estimating cl(·). 2
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That is, the algorithm guarantees a relative approxima-
tion ratio, in terms of an error ε ∈ [0, 1] between an
estimated, polynomial-time computable closeness and its
exact counterpart, for any query rewrites. If ε = 0,it is a
constant factor approximation. Moreover, as Q, |VNu

| and B
are often small, the algorithm is feasible for big G.

To show Theorem 3, we next show the connection be-
tween answering Why questions and the budgeted submod-
ular maximization problem [22].

Submodularity. Given refinement operators O, we define
the marginal gain of a refinement operator o to O as mg(O, o)
= cl(O ⊕ {o}) - cl(O). We first show the following result,
which can be easily verified by Lemma 1. We say an operator
is picky if it is likely to prune at least a node in VNu .

Lemma 4: Function cl(·) is submodular over picky set Os, i.e.,
for any sets O1 and O2, such that O1 ⊂ O2 ⊂ Os, and an
operator o ∈ Os (o 6∈ O2), mg(O1, o) ≥ mg(O2, o). 2

Proof: A set function f is said to be submodular on a set O
if for O1 ⊆ O2 ⊆ O and o ∈ O

cl(O1 ∪ {o})− cl(O1) ≥ cl(O2 ∪ {o})− cl(O2)

Here, cl(O) =
|Q′(u,G)∩VNu |

|VNu |
represents the number of nodes

in VNu that has been removed from Q(uo, G) given operator
set O. cl(O ∪ {o}) − cl(O) refers to the normalized number
of nodes in VNu that has been removed from the match set
given operator o. To show the submodularity, it suffices to
show that if a node in VNu is removed from QO2(uo, G), it is
also removed from QO1(uo, G) given same operator o. Here
QOi = Q⊕Oi, and QOi could be a disconnected query.

We next prove the submodularity by contradiction. If a
node v has been removed from QR(uo, G) given operator
o, which means v ∈ QO2

(uo, G) but v /∈ QO2∪{o}(uo, G).
Assume v has not been removed from QO1

(uo, G) with o.
Then we have v ∈ QO1

(uo, G) and v ∈ QO1∪{o}(uo, G).
Given Lemma 1, it contradicts that if v /∈ QO2∪{o}(uo, G)
then v /∈ QO1∪{o}(uo, G). Based on Lemma 1, the above dis-
cussion holds for both connected and disconnected queries.
Given these, Lemma 4 follows. 2

The submodularity suggests that we may approximate
the optimal query rewrites by solving an instance of budgeted
submodular maximization problem [9], [22]. Given picky set
Os and set VNu

, it computes a set O ⊆ O, such that c(O) ≤
B, and cl(O, VNu

) is maximized. A greedy algorithm en-
sures a 1− 1

e approximation by greedily selecting operators
with maximum mg [23]. This nevertheless requires O(|Os|2)
subgraph isomorphism tests, and is infeasible for large G.

We can do better: our algorithm reduces unnecessary
verification of operators, by (1) estimating cl(·) of the cur-
rently selected and verified picky operators, and (2) dynam-
ically deciding and pruning unpromising operators.

Algorithm. The algorithm, denoted as ApproxWhy and il-
lustrated in Figure 3, has the following steps.

(1) It invokes a procedure GenPicky to generate a set of
refinement picky operatorsOs (line 1). It then initializes sets
O1 and O2 (lines 2-3), where O1 contains a single operator
with the maximum cl(·) verified by Match.

Algorithm ApproxWhy
Input: graph G, query Q, cost bound B > 0,

a Why question W=(uo, VNu), guard threshold δ;
Output: the optimal operator set O′ that answers W .
1. Os := GenPicky(Q,G, VNu , B);
2. set O1 := argmax{cl({o})} : o ∈ Os, c(o) ≤ B,

guard({o}) ≤ δ };
3. set O2 := ∅; set O′s = Os;

/*greedy selection of refinement operators*/
4. while O′s 6= ∅ do
5. for o ∈ Os do m̂g(o) := ĉl(O2 ∪ {o})− ĉl(O2);
6. o∗ := argmax{ m̂g(o)

c(o)
: o ∈ Os};

7. if c(O2)+c(o∗)≤B and guard(O2 ∪ {o∗} ≤ δ then
8. O2 := O2 ∪ {o∗}; O′s := O′s \ {o∗};

/*prune conflicting operators for selected o∗*/
9. Os := Os \ Confl(o∗)); O′s := O′s \ Confl(o∗));

/*prune more constrained counterparts of discarded o∗*/
10. if guard(O2 ∪ {o∗}) > δ then
11. Os := Os \ Const(o∗); O′s := O′s \ Const(o∗);
12. O′ = argmaxOi∈{O1,O2} ĉl(Oi) ;
13. return O′;

Fig. 3: Algorithm ApproxWhy

(2) It then iteratively selects a refinement operator o∗ from
O that maximizes the ratio of cost c(o∗) to an estimated
marginal gain m̂g(o∗) (lines 4-8). The latter refers to an
estimated number of the matches in VNu that are removed
due to o∗, estimated by a procedure EstMatch. The operator
o∗ is selected if the query editing cost is bounded by B, and
the guard condition holds (line 8).

During the process, ApproxWhy applies the following
pruning strategy (lines 9-11; see “Optimization”): (a) if an
operator o∗ is selected, it prunes all its conflicting set (Confl)
from the candidate set which leads to empty answers; and
(b) if o∗ is to be discarded due to violating the guard
condition, it prunes all its constrained set (Const) which will
also violate the guarded condition. The process repeats until
all the picky operators are processed.

(3) It then set and returnO’ as the set ofO1 orO2, whichever
has larger estimated answer closeness (lines 13-14).
Procedure GenPicky. Given VNu

, a single refinement oper-
ator o is picky, if Q ⊕ {o} may exclude a node in VNu

from
Q(uo, G), by reducing candidates. To ensure the complete-
ness, GenPicky generates AddE first, followed by AddL and
RfL. It uses the following notions. (1) Let Nd(VNu

) (resp.
Nd(VNu)) denote the d-hop neighbors of the nodes in VNu

(resp. Q(uo, G) \ VNu ) in G, i.e., nodes having distance d
to some nodes in VNu . Given a node u′ in Q with distance
d(u′, uo) to the output node uo, we define a set N(VNu , u

′)
(resp. N(VNu

, u′)) as the nodes in Nd(u′,uo)(VNu
) (resp.

Nd(u′,uo)(VNu
)) having the same label of u′. (2) Given a

node u′ and a literal l = u′.A op c ∈ FQ(u′), attribute
u′.A is common (resp. differential) if it is in a literal of a node
v ∈ N(VNu

, u′), and is in a literal of a (not necessarily the
same) node v′′ (resp. not seen in any literal of the nodes)
from N(VNu

, u′). (3) The active domain of attribute A w.r.t.
node set V , denoted as dom(A, V ), is a set of all the distinct
values of v.A with v ranges over V .

GenPicky applies the following rules.

Generating AddE. GenPicky first adds operator AddE(e) to
insert a new query edge e = (u1, u2), if and only if there is an
edge e′= (v1, v2), such that v1 ∈ N(Q(uo, G), u1), and v2 ∈
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N(Q(uo, G), u2). Specifically, (1) When both u1 and u2 are
inQ, it inserts e and sets L(e)=L(e′); (2) Assume w.l.o.g. u2 is
not in Q, it extends AddE (e) to a “composite operator”: for
each attribute v2.A, it also adds AddL(l) to include a template
literal l = (u2.A, ‘⊥’, ‘ ’), where op = ‘⊥’ is a placeholder
(“don’t care”), and wildcard ‘ ’ means “any value”, both to be
resolved. For query Q with diameter dQ, any query rewrite
of Q induced by this operator has diameter at most dQ+1.

Generating AddL. These rules insert new literals to Q that
involve both common and differential attributes to reduce
candidates. For each node u′ in Q and literal l = u′.A op c,
there are two cases. (1) Pairing constraints. if u′.A is a com-
mon attribute and op ∈ {>,≥} (resp. op ∈ {<,≤}) speci-
fying lower (resp. upper) bar, but no “pairing” constraints
is found at u′, it adds a template literal AddL(u′.A,≤, ‘ ’)
(resp. AddL(u′.A,≥, ‘ ’)) to Os, where ‘ ’ is a wildcard to
be resolved. (2) Differential attributes. if u′.A is differential, it
adds a template literal AddL(u′.A, ‘⊥’, ‘ ’), to be refined.

Generating RfL. These rules refine existing literals in Q to re-
duce candidates. Given dom(A,N(VNu , u

′)) and each literal
l = u′.A op c ∈ FQ(u′),
◦ if op ∈ {<,≤}, for each a ∈ dom(A,N(VNu

, u′)), and
c ≥ a, add RfL(l, u′.A < a);
◦ if op ∈ {>,≥}, for each a ∈ dom(A,N(VNu

, u′)) and
c ≤ a, add RfL(l, u′.A > a);
◦ if op is ‘=’, for each a ∈ dom(A,N(Q(uo, G), u′) such

that a 6= c, add RfL(l, u′.A = a).
Intuitively, each of these operators is picky in that there
always exist at least a candidate v′ ∈ N(VNu , u

′) that fails
the literal it enforces, thus may in turn removes matches in
VNu . Note u′ can be the targeted output node u itself.

Resolving templates. The last step of GenPicky resolves those
AddL(l) with template literals l in Os, by replacing l with
constant literals. (1) For l = (u′.A, ‘⊥’, ‘ ’), it replaces ‘⊥’ to
any of {<,≤,=,≥, >}, and reduces AddL(l) to its counter-
parts with literals carrying ‘ ’ only. (2) It then resolves each
template with ‘ ’ by a case analysis for op, following the
rules used in “Generating RfL” to derive “picky” literals.
This replaces all AddL(l) with template literals to a set of
picky operators applicable to Q.

Example 6: Recall the Why question in Example 1 with
VNu

= {A5, S5}, and let budget B as 4. A fraction of
a picky set, which includes o1 = AddE (Cellphone, Se-
ries), o2 = AddL (Series.val = Series:S)}, and o3 = AddL
(Cellphone.Price>$120, is generated by GenPicky as follows.
(1) It first follows rules for adding AddE, and add o1
={AddE(Cellphone,Series). As a part of composite operator,
it also adds o4 = AddL(Series.val, ‘⊥’, ‘ ’)} with a template
literal. (2) Next, adds a pairing constraints o5 = AddL
(Cellphone.Price>‘ ’), with a template literal. (3) It generates
RfL operators with common attributes (omitted).

GenPicky next resolves the template literals. (a) It
first replaces o4 with operators with specific op, includ-
ing o6 = AddL(Series.val = ‘ ’)}. (b) It then resolves the
template literals in o6 and o5, respectively. For o6, as
dom(Series.val,N(VNu ,Series)) = {Series : S, Series :
A}, it replaces o6 with o2 = AddL(Series.val = Series :
S)} to exclude A5, and o7 AddL(Series.val = Series :
A)} to exclude S5, both are picky operators. For o5,

it finds that dom(Cellphone.Price,N(VNu
,Cellphone)) =

{$250, $120}, thus replaces o5 with picky operators o3 =
AddL (Cellphone.Price> $120) to exclude S5, and o8 = AddL
(Cellphone.Price> $250) which excludes S5 and A5. The
picky set contains o1- o3, o7, o8, among others. 2

Procedure EstMatch. Given operators O and a single oper-
ator o, EstMatch efficiently estimates cl(O) and cl(O ∪ {o})
(as ĉl(O) and ĉl(O∪{o}), respectively) and computes m̂g(o)
as ĉl(O ∪ {o}) - ĉl(O), without actual query processing by
subgraph isomorphism tests.
(1) For each picky operator o ∈ O, it first finds, once for all, a
set of affected nodes Aff(o) that are no longer matches of Q
due to o. This is doable as soon as cl(o) is computed (line 2).
(2) It then estimates Aff(VNu), a fraction of VNu that be-
comes non-matches due to O. (a) Given O, it first sets
Aff(VNu) =

⋃
o∈O(Aff(o) ∩ VNu), i.e., all the non-matches of

u already identified by Aff(o). (b) It then extends Aff(VNu)
and updates ĉl(O), by checking if the nodes in Aff(VNu

)
= VNu

\ Aff(VNu
) becomes a non-match. This is efficiently

conducted by consulting a path index [9] that samples paths
from Q and verifies path matches. The step continues until
all the nodes in Aff(VNu) are processed.

Example 7: Consider the picky set Os in Example 6. Let
O2 contains o3 = AddL(Cellphone.Price > $120). ApproxWhy
next greedily chooses o2 = AddL (Series.val=Serie:S), which
has maximized m̂g(o2)

c(o2)
= 0.5. Other picky operators (e.g.,

o8 = AddL(Cellphone.Price > $250)) are not as good (e.g.,
m̂g(o8)=0) given o3, thus are not selected. 2

Optimization. We next introduce the pruning techniques.

Early Pruning. GenPicky extends its counterpart in [9] by
early pruning the picky operators that lead to violation
of the guard conditions. It performs a case analysis of a
picky operator o to estimate a lower bound of the guard
ratio guard(o), which is defined as guard(o) = |Qr(uo,G)|

|Q(uo,G)| ,
where Qr(uo, G) refers to a fraction of the matches in
Q(uo, G) \ VNu

that will be removed if o is applied. If the
lower bound |Q

r(uo,G)|
|Q(uo,G)| > δ, o is pruned. GenPicky identifies

Qr(uo, G) in polynomial time with the following cases.
operator o Qr(uo, G)

AddL, RfL or AddE at uo non-candidates of uo

AddL or RfL at u (u 6= uo) {v| u has no candidate in NdQ+1(v)}
AddE(u, u′) {v| (u, u′) has no candidate in NdQ+1(v)}

Pruning “Conflict” operators (lines 10, ApproxWhy). If o∗ is
selected to be applied, ApproxWhy induces a conflict operator
set Confl(o∗) ⊆ Os, where for each operator o ∈ Confl(o∗),
Q ⊕ {o∗, o}(G) = ∅. That is, applying both o and o∗ to Q
leads to a query rewrite with empty answer. Specifically,
ApproxWhy computes Confl(o∗) as follows.

operator o∗ Confl(o∗)
AddL(u.A>c) {AddL(u.A op c′) |op ∈ {<,≤,=}, c≥c′}
AddL(u.A<c) {AddL(u.A op c′) |op ∈ {>,≥,=}, c≤c′}
AddL(u.A=c) {AddL(u.A = c′)|c6=c′} ∪ {AddL(u.A op

c′),RfL(u.A op c2, u.A op c′)|c op′

c′, (op, op′) ∈ {(>,≤), (≥, <), (<,≥), (≤, >)}}
RfL(u.A>c1,
u.A>c)

RfL(u.A op c2, u.A op c′) |op ∈ {<,≤}, c≥c′}

RfL(u.A<c1),
u.A<c)

RfL(u.A op c2, u.A op c′) |op ∈ {>,≥}, c≤c′}

For o∗ (AddL, RfL) with comparison operators ≥ (resp.
≤), the conflict set Confl(o∗) can be inferred by posing
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small changes to its counterpart with > (resp. <). For
example, if o∗=AddL(u.A≥c), Confl(o∗)={AddL(u.A op c′)
|op ∈ {<,≤,=}, c>c′}. If applying two operators o1 and
o2 achieve a same query rewrite, for example AddL(u.A>c)
and RfL(u.A>c1, u.A>c), their conflict operator set can be
shared, i.e., Confl(o1) = Confl(o1) ∪ Confl(o2).

Pruning “Constrained” operators (lines 11-12, ApproxWhy). If
applying o∗ already violates the guard condition, enforcing
any operator that is “more constrained” than o∗ also violates
the guard condition (Lemma 1). ApproxWhy induces a set of
constrained operator set Const(o∗) ⊆ Os as follows.

operator o∗ Const(o∗)
AddL(u.A>c) {AddL(u.A op c′), RfL(u.A op

c2, u.A op c′), op ∈ {>,≥}|c<c′}
AddL(u.A<c) {AddL(u.A op c′), RfL(u.A op

c2, u.A op c′) op ∈ {<,≤}|c>c′}

We can verify that RfL(u.A>c1, u.A>c), AddL(u.A≥c),
RfL(u.A≥c1, u.A≥c) (resp. RfL(u.A<c1, u.A < c),
AddL(u.A≤c), RfL(u.A≤c1, u.A≤c)) all have the same con-
strained set as AddL(u.A>c) (resp. AddL(u.A<c)).

Performance Analysis. The approximation can be verified
by constructing a reduction from our problem to the bud-
geted submodular maximization problem with estimated
marginal gain [22], when exact marginal gain cannot be
efficiently evaluated. Given a fixed operator set O and a
cost function that assigns each operator o ∈ O a cost, (1)
An optimal set O∗ of induces an optimal query rewrite Q′∗

with maximized closeness. (2) If EstMatch estimates mg(O)
with a bounded error ε′, i.e., |m̂g(O)−mg(O)| ≤ ε′, then the
submodularity function can be maximized with guarantee
1
2 ·(1−

1
e ) and a factor (

B(dQ+2)
dQ

)ε′ [22]. As EstMatch ensures

|ĉl(Q′, VNu
) − cl(Q′, VNu

)| ≤ ε, let m̂g(O) = ĉl(Q′, VNu
) -

ĉl(Q,VNu), thus m̂g(O) approximates mg(O) within error ε′

= 2ε. ApproxWhy thus ensures to find Q′ that approximates
Q∗ with cl(Q′, VNu) ≥ 1

2 · (1−
1
e ) · cl(Q∗, VNu) - 6Bε.

We next analyze the time cost of ApproxWhy. Define the
size |NdQ+1(Q(uo, G))| of NdQ+1(Q(uo, G)) as the num-
ber of total literals and edges, similarly as the size |Q|.
GenPicky generates a constant number of operators for
each literal and edge in NdQ+1(Q(uo, G)). It thus takes
O(|Q||NdQ+1(Q(uo, G))|) time to generate the picky set Os,
with size |Os| in O(|NdQ+1(Q(uo, G))|). The initialization
of set O1 (line 2) requites |Os| times of Match and thus
takes time O(|Os||NdQ+1(VNu)||Q|). The iterative selection
process uses |O2| estimations of m̂g(O∗), and the estima-
tion takes time O(|NdQ+1(VNu)|). ApproxWhy thus takes
in total O(|Q||NdQ+1(Q(uo, G))| + |Os||NdQ+1(VNu

)||Q| +
|Os|2|NdQ+1(VNu)|) time.

The above analysis completes the proof of Theorem 3.

4.2 Answering Why-not

Unlike Why questions, the answer closeness under relax-
ation for Why-not questions is no longer submodular, and
is hard to approximate even with an oracle that reports
cl(·) [23]. We next introduce a fast heuristic algorithm.

Algorithm. The general idea is to compute an operator set
by solving a budgeted maximum cover problem. Given picky
set Os and VCu

, it computes an operator set O ⊆ Os with
estimated matches that maximally “cover” VCu

.

The algorithm, denoted as FastWhyNot, performs the
following. (1) It invokes a procedure GenPicky to generate
picky operators Os, and initializes a working set O′. (2)
It then iteratively selects an operator o∗ from Os that (1)
satisfies the guard condition, and (2) maximizes the ratio
of c(o∗) to estimated marginal gain m̂g(o∗) (estimated by a
revised EstMatch), and greedily selects O′.

Procedure GenPicky. Similar to its counterpart in
ApproxWhy, procedure GenPicky generates picky operators
that can include new matches in VCu . It uses the following
similar notions. (1) Given a query node u′ in Q, we define
a set N(VCu , u

′) as the nodes in Nd(u′,u)(VCu) having the
same label of u′. (2) The common attributes of a node u′ in
Q w.r.t. VCu refers to all the node attributes in a literal of Q
that is also seen in a literal of a node from N(VCu , u

′).

Generating picky set. Procedure GenPicky inspects the candi-
dates in N(VCu

, u′) for nodes u′ in Q to identify picky set
that enlarges candidates of u′. It uses the following rules.

Generating RxL. For each literal l= (u′.A op c) ∈ FQ(u′)
of Q with common attribute u′.A, and each constant a ∈
dom(A,N(VCu

, u′)),
◦ if op ∈ {<,≤,=} and c ≤ a, add RxL(l, u′.A ≤ a);
◦ if op ∈ {>,≥,=} and c ≥ a, add RxL(l, u′.A ≥ a);

Generating RmL and RmE. GenPicky simply adds RmE(e)
(resp. RmL(l)) to O for each edge e and literal l in Q.

Example 8: Given query Q and the Why-not question that
specifies VCu as {S8, S9} (Figure 1), GenPicky generates
Os that include o1 = RxL(l, Cellphone.price $654), o2 =
RxL(l, Cellphone.price, $799), o3 = RmE(Cellphone, Color),
and o4 = RmL(Deal, carrier=AT&T ), among others, where l
= (Cellphone.price ≤ $650) is a literal from Q. 2

Match estimation. Given relaxation operator O, EstMatch
estimates cl(O) by estimating new matches from VCu

in-
troduced by O. It traces back to GenPicky and finds nodes
Aff(o) that are potential new matches for each o. It then
performs similar sampled path tests for each node v ∈ VCu

,
by consulting the path index [9] at run-time. The difference
is that it considers v to be an estimated match, only when
it passes all tests, and has matched paths that contain only
matches in Q(uo, G) and Aff(o). It treats all such node as the
new matches, and update ĉl(·) accordingly.

Early Pruning. FastWhyNot uses a similar intuition as
in ApproxWhy to prune operators that violate the guard con-
dition. The difference is that it capitalizes on Lemma 1 de-
fined on relaxation. Specifically, for each relaxation operator
o that is pruned due to the violation of the guard condition,
it prunes all the operators in Os that are “more relaxed”
than o. This set of operators, denoted as Rel(o∗) ⊆ Os, is
generated using the following rules.

operator o Rel(o∗)
RxL(u.A op c1, u.A op c),

op ∈ {>,≥}
{RxL(u.A op c2, u.A op c′)
|op ∈ {>,≥}, c>c′}

RxL(u.A op c1, u.A op c),
op ∈ {<,≤}

{RxL(u.A op c2, u.A op c′)
|op ∈ {<,≤}, c<c′}

RmL(u.A op c) {RmL(u.A op′ c′)| any op′ and c′}

Time cost. Following the analysis of ApproxWhy,
FastWhyNot takes O(|Q||NdQ(VCu)| + (|Os|)2|NdQ(VCu)|)
time to compute Os and performs greedy selection.
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5 VARIANTS OF WHY AND WHY-NOT

We next discuss several practical variants of Why-questions.

5.1 Multi-Why-Questions
A query may contain multiple output nodes with answers
to be clarified. For example, (1) a user may specify both
“Cellphones” and “Deal” as output nodes (Figure 1) (by
enforcing e.g.,’Construct’ semantics of SPARQL [24]) for
answer clarification; (2) multiple users may access the same
query and enforce different search focus. We start with a
characterization of Why-questions for such needs.

Multi-Why-Questions. A Multi-Why-not question is a pair
(U , VC), where (1) U is a set of output nodes in Q, (2)
VC=

⋃
uo∈U VCu

, where for each output node uo ∈ U , a set of
“missing matches” VCu

of uo is specified. Similarly, A Multi-
Why question is a pair (U , VN ), where VN=

⋃
uo∈U VNu

is the
set of unexpected matches.

Answer Closeness. Given a Multi-Why question (U , VN ),
where Q(U , G) =

⋃
uo∈U Q(uo, G) and there is no overlap

between nodes in each VNu , we extend the notion of the
answer closeness clm(O, VN ) as

clm(O, VN ) =
|(Q(U , G) \Q′(U , G))

⋂
VN |

|VN |
Similar to answering Why questions, a guard ratio is de-
fined as guard(o) = |(

⋃
uo∈U (Q(uo, G) \ Q′(uo, G))) ∩

(
⋃
uo∈U Q(uo, G) \ VN )|/|

⋃
uo∈U (Q(uo, G)) \ VN )|.

Similarly, given a Multi-Why-not question (U , VC),
where VC =

⋃
uo∈U VCu

, Q(U , G) =
⋃
uo∈U Q(uo, G), we

define the closeness clm(O, VC) as

clm(O, VC) =
|Q′(U , G))

⋂
VC |

|VC |
The guard ratio for answering Multi-Why-not questions is
defined as guard(O) = |

⋃
uo∈U (Q′(uo, G) \ (Q(uo, G) ∪

VCu))|/|
⋃
uo∈U (Q(uo, G))|.

Problem Statement. Given a query Q, answer Q(U , G),
graphG, a Multi-Why-questionW and an editing budgetB,
the problem of answering Multi-Why-question is to compute
an operator set O∗ such that

O∗ = arg max
O:c(O)≤B

clm(O, VU )

where set VU refers to VC (resp. VN ) for a Multi-Why-not
question (resp. Multi-Why question) W with a bounded
guard ratio. We can verify that answering Multi-Why and
Multi-Why-not questions are both NP-hard.

Answering Multi-Why. One may process each missing
match set “one-by-one”. This alone does not ensure good
queries that can optimize the overall answer closeness. We
outline an algorithm that processes the match sets in a single
batch with desirable quality guarantee.

We start by showing that the extended closeness clm(·)
for Multi-Why preserves the submodularity.

Lemma 5: clm(·) is submodular over picky set Os. 2

Proof: As the sets VNu specified for each output node are
pairwisely disjoint, clm(O) =

∑
u∈U cl(O)|VNu |
|VN | is a linear

combination of cl(O). Since cl(O) is submodular (Lemma 4),
clm(O) is also submodular for refinement operators. 2

Approximation. We next outline an approximation algorithm,
denoted as MultiApproxWhy. MultiApproxWhy follows the
similar steps as ApproxWhy. There are several differences.
(1) It invokes GenPicky to generate operators by exploring
at most dQ+1 hop neighbors of nodes in Q(U , G). (2) clm(·)
is used instead of cl(·) and EstMatch is used to estimated the
marginal gain ˆmgm(o) = ˆclm(O2 ∪ {o})− ˆclm(O2).

Analysis. MultiApproxWhy ensures closeness at least 1
2 (1 −

1
e )clm(O∗, VN ) − 6Bε. This can be verified by a re-
duction to budgeted submodular maximization follow-
ing the analysis of ApproxWhy. For each literal and
edge in NdQ+1(Q(U , G)), GenPicky generates picky op-
erators in O(|Q||NdQ+1Q(U , G)|) time. The initialization
takes O(|Os||NdQ+1(VN )||Q|) time. The estimation of each
m̂g(o) takes O(|NdQ+1(VN )|) time. Thus MultiApproxWhy
is in O(|Q||NdQ+1(Q(U , G))| + |Os||NdQ+1(VN )||Q| +
|Os|2|NdQ+1(VN )|) time.

Answering Multi-Why-not. Algorithm FastWhyNot can be
readily extended to handle the case where there are multiple
Why-not questions, where user give a set of query nodes
U and for each query nodes a set of missing matches.
We extend algorithm FastWhyNot to answer Multi-Why-not
questions. The algorithm, denoted as MultiFastWhyNot, in-
vokes GenPicky to generate picky operators from N(VC , u

′)
for all u′ ∈ U . It then iteratively selects an operator o∗ that
(1) maximizes the ratio of clm(o∗) to estimated marginal
gain, and (2) satisfies the guard condition. Following a
similar analysis of MultiApproxWhy, MultiFastWhyNot is in
O(|Q||NdQ(VC)|+ |Os|2NdQ(VC)) time.

Mixed Why and Why-not. We next outline an algorithm
to answer a set of mixed Why and Why-not questions. The
algorithm first group all Why (resp. Why-not) questions to
a single Multi-Why (resp. Multi-Why-Not) question. It then
invokes MultiFastWhyNot which first relaxes the query Q to
intermediate counterpart Qc to include desired answers for
Multi-Why, and then refine Qc to Q′ with MultiApproxWhy
to exclude those from Multi-Why-Not.

5.2 “Why-empty” and “Why-so-many”

Why-empty. A Why-empty question [25] is a special case of
a Why-not question W =(uo, VCu

), where Q(uo, G) = ∅, and
VCu

may be ∅. A user asks for an operator set that results in
a query rewrite Q′ that returns at least one entity as answer.

Algorithm FastWhyNot can be extended to answer Why-
empty questions as follows. (1) It first initializes VCu

as the
candidates of uo if VCu

= ∅, i.e., nodes with label L(uo). (2) It
then generates picky operators based on VCu

and iteratively
selects operators. (3) It early terminates when the answer
closeness cl(O) reaches a threshold α= 1

|VCu |
.

Why-so-many. “Why-so-many” (or information-overload
problem [25], [26]) for subgraph queries is a case of Why
question W=(uo, VNu

) without explicitly specified VNu
, i.e.,

the number of results exceeds the user’s expectation. An
answer to this question is a more specific query rewrite that
delivers a bounded number of query answers, by setting
a threshold β (β= 1

|VNu |
by default). Algorithm ApproxWhy

readily supports “Why-so-many” by setting VNu=Q(uo, G),
and early terminates when answer closeness reaches β.
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6 ANSWERING WHY-RANK QUESTIONS

A new challenge of answering Why-rank questions is to
identify query manipulation that can re-rank matches ac-
cording to desired counterparts in I . Algorithms ApproxWhy
and FastWhyNot cannot be applied for such cases.

We next introduce an algorithm, denoted as
FastWhyRank, to answer Why-rank questions. The
algorithm fine-tunes the query towards desired answer
rank, by a two-phase “refinement-relaxation” process. In
each phase, it (1) dynamically infers specific classes of picky
operators that may re-rank the current matches, and (2)
greedily selects the operator with the best marginal gain
determined by the verified results and I .

Picky Operators. Given the top-k answer Qk(uo, G) w.r.t.
ranking function R and ordered pairs I , an operator o is
picky if (1) Q′=Q ⊕ o is a query rewrite, and (2) there exists
at least an ordered pair 〈v, v′〉 ∈ I , such that either v′ /∈
Q′k(uo, G), or v′ ∈ Q′k(uo, G) and R(Q′, v) ≥ R(Q′, v′).

Our first result identifies a set of “non-picky” operators
that can be safely pruned for a given Why-rank question.

Lemma 6: Given Q(uo, G) and a Why-rank question (uo, I), for
any relaxation operator o (RmE, RxL, or RmL) defined on nodes
other than uo in Q, v′ ∈ Q′k(uo, G) and R(Q′, v) < R(Q′, v′)
for any pair (v, v′) ∈ I . 2

That is, relaxing Q on nodes and edges not involving uo
has no impact on the ranking of any two specific matches in
Q(uo, G). This can be verified as follows. (1) Relaxation does
not remove matches, thus v and v′ remain to be in Q(uo, G)
(Lemma 1). (2) Any relaxation operator that does not involve
uo has no impact on the ranking scores of any candidate of
uo. Thus R(Q′, v) < R(Q′, v′) for any pair 〈v, v′〉 ∈ I .

Algorithm. Lemma 6 indicates that it is more effective
to take a “refinement-and-relaxation” strategy to identify
promising query rewrites early. We next outline the algo-
rithm FastWhyRank (illustrated in Figure 4) as follows.
(1) Refinement Phase. It invokes a procedure GenRef to
generate a picky set Os which contains only refinement
operators (line 2). FastWhyRank then iteratively selects a
refinement operator o∗ from Os that maximizes a marginal
closeness gain (lines 3-5). This process repeats until no picky
refinement operator can be applied.
(2) Relaxation Phase. If there is available budget for editing
and there are pairs in I not re-ranked as desired, it invokes
GenRel to generate a set of picky relaxation operators (lines
6-8). It then iterates all relaxation operators and selects the
one that can maximize the closeness gain (lines 9-11), until
no relaxation can be applied or the editing cost reaches B.

Optimization. To further reduce the cost incurred by verify-
ing the closeness gain in refinement (line 4) and relaxation
phase (line 10), FastWhyRank uses two optimization strate-
gies. Denote Q′ = Q⊕O and Q′′ = Q′ ⊕ {o}.
Incremental Verification. For AddL and RfL over uo, it is in
polynomial time to check if a match in I is removed from
Q′(uo, G). For other refinement operators (any AddE, and
AddL and RfL not involving uo), we incrementally verify
whether each node v ∈ Q′k(uo, G) remains to be a match of
Q′′, without recomputing Q′′k(uo, G) from scratch. It early

Algorithm FastWhyRank
Input: graph G, query Q, cost bound B > 0,

a Why-rank question W=(uo, L);
Output: the optimal operator set O′ that answers W .
1. set O′ := ∅; Q’ := Q
2. Os := GenRef(Q,G,B);

/*greedy selection of refinement operators*/
3. while Os 6= ∅ and c(O′) ≤ B do
4. o∗ := argmax{cl(O′ ∪ {o})− cl(O′) : o ∈ Os};
5. O′ := O′ ∪ {o∗}; O′s := O′s \ {o∗}; Q′ := Q′ ⊕ {o∗}
6. if cl(O′, I) = 1 or c(O′) ≥ B do
7. return O′;
8. Os := GenRel(Q,G,B);

/*greedy selection of relaxation operators*/
9. while Os 6= ∅ and c(O′) ≤ B do
10. o∗ := argmax{cl(O′ ∪ {o})− cl(O′) : o ∈ Os};
11. O′ := O′ ∪ {o∗}; O′s := O′s \ {o∗}; Q′ := Q′ ⊕ {o∗}
12. return O′;

Fig. 4: Algorithm FastWhyRank

terminates whenever a subgraph isomorphism is found for
v, and updates cl(O′ ∪ {o}) accordingly.

Early Stopping. Verifying the marginal gain of each operator
o may require 2 × |I| subgraph isomorphism tests to verify
if v and v′ remain in Q′k(uo, G) for each pair 〈v, v′〉 ∈ I .
FastWhyRank further reduces unnecessary verification in
both refinement and relaxation phases as follows.

Lemma 7: Given query Q and operator o, for any 〈v, v′〉 ∈ I ,
(1) If o is an AddE, RfL or AddL not involving uo inQ, and either
(a) R(Q, v) ≥ R(Q, v′), v′ ∈ Qk(uo, G), or (b) R(Q, v) <
R(Q, v′), v /∈ Qk(uo, G), v′ ∈ Qk(uo, G), then verifying v′ ∈
Q′k(uo, G) is unnecessary;
(2) If o is a RmE, RxL, or RmL involving uo in Q, verifying v′ ∈
Q′k(uo, G) (resp. v ∈ Q′k(uo, G)) is unnecessary if R(Q′, v) ≥
R(Q′, v′) and v′ /∈ Qk(uo, G) (resp. R(Q′, v) < R(Q′, v′) and
v /∈ Qk(uo, G), v′ ∈ Qk(uo, G)). 2

Proof: For refinement operators in (1), ifR(Q, v) ≥ R(Q, v′),
one only needs to verify whether v is excluded from
Q′k(uo, G), as o has no impact on the ranking scores. This
reduces the unnecessary verification for testing whether
v′ ∈ Q′k(uo, G). Similarly, Lemma 7 (2) follows. 2

Time cost. Let Nd(I) denotes the d-hop neighbors of the
nodes involved in I . GenPicky takes |Q||NdQ+1(I)| time to
generate the picky sets for NdQ+1(I). The iterative selection
takes |Os|2|NdQ+1(I)| time. FastWhyRank is thus in total
O(|Q||NdQ+1(I)|+ |Os|2|NdQ+1(I)|) time.

Our main results are summarized in Table 2.

7 EXPERIMENT

Using real-world graphs, we experimentally verify the ef-
fectiveness and efficiency of our algorithms.

Experiment Setting. We used the following setting.

Datasets. We use the following real-world graphs.
(1) Knowledge bases. These include (a) DBpedia1, which con-
sists of 4.86M entities, 15M edges, 676 labels (e.g., Person,
Building), and on average 9 attributes per node; (b) Yago2,
with 1.54M nodes and 2.37M edges (sparser compared to

1. http://dbpedia.org
2. http://www.mpi-inf.mpg.de/yago
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Problem Hardness Algorithm Time cost
Why NP-hard, APX-hard Approximation: cl(Q′)≥ 1

2 ·(1−
1
e )·cl(OPT ) - 6Bε. O(|Q||Nd(Q(uo, G))| + |Os||Nd(VNu )||Q| + |Os|2|Nd(VNu )|)

Why-not NP-hard Heuristic O(|Q||Nd(VCu )|+ (|Os|)2|Nd(VCu )|)
Why-rank NP-hard Heuristic O(|Q||Nd(I)|+ |Os|2|Nd(I)|)

TABLE 2: Main Results: Hardness and Algorithms
DBpedia), but with more diversified (324K) labels and on
average 5 attributes per node, and (c) Freebase (version 14-
04-14)3, with 40.32M entities and on average 8 attributes per
node, 63.2M relationships, and 9630 labels.
(2) Social recommendation networks include (a) Pokec4 a social
network with 1.6M users, 30.6M edges and 60 attributes per
node; and (b) IMDb5, with 1.7M nodes (e.g., movies), 5.2M
edges, and on average 6 attributes per node.
(3) E-commerce. (a) We adopted BSBM6 e-commerce bench-
mark to generate synthetic products graphs with tunable
size (up to 50M nodes, 126M edges and 3080 labels). (b) We
perform use case study on a large real online retailer data7.

Query & Question generation. We developed a query genera-
tor, which generates queries controlled by query size |Q| and
topologies (trees, acyclic, cyclic), as follows: (1) it generates
summaries [27] as query templates; (2) for each template,
it randomly selects a query node as the output node; (3)
from the isomorphic subgraphs of the query template, we
assign a set of attributes for each query node to ensure non-
empty initial Q(uo, G). For the real online retailer data, we
constructed subgraph queries from the search log.

To generate Why-questions, we randomly select a set
of nodes in Q(uo, G) as VNu . For Why-not questions, we
select VCu with the same type as uo. For Why-rank ques-
tions, we randomly select node pairs 〈vi, vj〉 which satisfy
R(Q, vi)<R(Q, vj). We remove all conflict node pairs in I .

By default, we set Q with 4 edges, 2 literals per node,
both |VCu

| and |VNu
| as 3, editing budget B = 4, k = 10,

δ = 25% for guard conditions and I with 4 ordered pairs.

Algorithms. We implemented the following in Java. (1) For
Why-questions, we compare the approximation ApproxWhy
with (a) its exact counterpart ExactWhy [9], which enumer-
ates and verifies all possible operators within budget B,
and (b) a counterpart ApproxWhyN [9] with no pruning
strategy (Section 4.1), and (c) its variant IsoWhy, which
uses subgraph isomorphism Match instead of EstMatch,
thus ensures ε=0. (2) For Why-not questions, we com-
pare FastWhyNot with the exact algorithm ExactWhyNot,
its variant FastWhyNotN proposed in [9] without pruning
strategy (Section 4.2), and its variant IsoWhyNot, which
applies exact Match. (3) For Multi-Why questions, we ex-
tend ExactWhy, ApproxWhy, and IsoWhy to MultiExactWhy,
MultiApproxWhy, and MultiIsoWhy, respectively, following
the strategy introduced in Section 5. (4) For Why-rank ques-
tions, we compare FastWhyRank with the exact algorithm
ExactWhyRank, and its variant FastWhyRankN without the
early stopping strategy (Section 6).

We ran all our experiments on a Linux machine powered
by an Intel 2.4 GHz CPU with 128 GB of memory. We

3. http://freebase-easy.cs.uni-freiburg.de/dump/
4. https://snap.stanford.edu/data/soc-pokec.html
5. https://www.imdb.com/interfaces/
6. http://wifo5-03.informatik.uni-mannheim.de/bizer/

berlinsparqlbenchmark/
7. www.JD.com
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Fig. 5: Answering Why questions

ran each experiment 10 times, each batch with 50 Why-
questions, and report the averaged results.

Experimental results. We next present our findings.

Exp-1: Performance on Why. We first evaluate the perfor-
mance of ExactWhy, ApproxWhy, ApproxWhyN and IsoWhy,
for answering Why questions.

Effectiveness. We report the absolute values of answer close-
ness achieved by the algorithms over all real-world datasets.
We calibrate “ground truth” optimal cases with closeness
≈ 1 for pragmatic referenced comparison. Figure 5(a) veri-
fies the following. (1) ApproxWhy preserves the quality guar-
antees of ApproxWhyN [9]. It reports query rewrites with
closeness at least 85% to their optimal counterpart, in all
cases (thus only ApproxWhy is shown). (2) While ExactWhy
reports optimal answers with exact closeness value by
Match (standard subgraph isomorphism), EstMatch is quite
accurate on estimating the answer closeness (ε ≤ 0.02 on
average). These verify the effectiveness of ApproxWhy.

Efficiency. Using the same setting, Figure 5(b) verifies the
following. (1) The pruning techniques effectively improves
the efficiency of ApproxWhyN by 23.2%. (2) ApproxWhy is
feasible on large graphs. It takes on average 5.6 seconds to
achieve near optimal results, and outperforms ApproxWhyN,
ExactWhy and IsoWhy, by 1.3, 12.7, and 10.2 times, respec-
tively. These suggest the practical application of ApproxWhy
in interactive graph exploration.

Exp-2: Performance on Why-not. We next report the perfor-
mance of ExactWhyNot, FastWhyNot and IsoWhyNot.

Effectiveness. Figure 6(a) reports the closeness of query
rewrites achieved by ExactWhyNot and its counterparts.
The closeness of query rewrites reported by ExactWhyNot
is referred as optimal results, which is on average > 0.95.
Under a small budget B = 4, FastWhyNot can achieve a
quite good result, with answer closeness at least 84% of the
optimal counterparts, for all the cases.

Efficiency. Figure 6(b) shows that it takes on average 2
minutes, 100 seconds and 7 seconds for ExactWhyNot,
IsoWhyNot and FastWhyNot to answer a Why-not question
with 3 missing matches under budget B=4. FastWhyNot
is 19.5 times and 14.6 times faster than ExactWhyNot and
IsoWhyNot, respectively, and computes query rewrites with
good answer closeness. FastWhyNot improves the efficiency
by 19.8% compared with FastWhyNotN. This verifies the
effectiveness of the pruning techniques.
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Fig. 6: Answering Why-not questions
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Fig. 7: Answering Multiple Why questions (Yago)
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Fig. 8: Why-so-many and Why-empty: Efficiency (Yago)

Impact of factors. The impact of varying the complexity
of queries (size, topology), editing budget, size of Why-
questions (e.g., number of missing or unexpected entities),
and graph size to the algorithms with pruning strategies is
consistent with the results in [9]. We thus omit the results.

Exp-3: Answering Variants of Why-questions.

Answering Multi-Why-questions. We next evaluate the impact
of the number of output nodes |U| to the performance
of MultiExactWhy, MultiApproxWhy and MultiIsoWhy. Fig-
ure 7(a) shows that the answer closeness achieved by all
the algorithms decreases for larger |U|. Indeed, it is more
difficult to make a single query rewrite to simultaneously
satisfy answer closeness requirement posed on multiple
output nodes. On the other hand, MultiApproxWhy is able
to obtain query rewrites with answer closeness at least 84%
compared with MultiExactWhy.

As shown in Figure 7(b), ApproxWhy takes 19 (resp. 5.7)
seconds with 4 (resp. 1) output nodes. All algorithms take
more time when the number of output nodes increases. The
reason is that multiple output nodes carry more unexpected
results, thus the algorithm induces a larger picky set.

The performance of the algorithms answering Multi-
Why-not questions are consistent with algorithms answer-
ing Multi-Why algorithms. We omit the results here.

Answering Why-empty and Why-so-many. Figure 8 shows the
efficiency result of answering Why-empty (resp. Why-so-
many) questions by varying the termination condition α
(resp. β). The results show that it takes more time for all
algorithms over larger α (resp. β) as the algorithms need to
include more nodes as new answers (resp. exclude more
nodes from the answer set) in order to achieve higher
answer closeness. Similar to the results in answering Why
and Why-not questions, FastWhyNot and ApproxWhy are
the least sensitive ones.
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Exp-4: Performance on Why-Rank. We next evaluate the
performance of FastWhyRank and ExactWhyRank on an-
swering Why-rank questions, and the impact of varying
budget B, question size |I| (the number of node pairs to
be “re-ranked”), query (literal) size and data size |G|.
Effectiveness. We calibrate the optimal cases by ensuring the
existence of “ground truth” queries with desired ranked
matches. Figure 9(a) reports the answer closeness achieved
by FastWhyRank and ExactWhyRank within budget B (set
as 5). FastWhyRank computes near optimal query rewrites
that achieve on average 95% of its optimal counterpart
reported by ExactWhyRank.

Impact of factors: effectiveness. As shown in Figure 9(b) (over
Yago), both FastWhyRank and ExactWhyRank identify
queries with more matches to be properly reranked, when
more operators are allowed (B is larger). We also observed
that the closeness often converges at small B (typically at 5).
This suggests that Why-rank questions can be answered by
posing a small modification to Q in practice.

Efficiency. Figure 10(a) reports the efficiency of FastWhyRank
and its counterparts. It is quite feasible to answer Why-
Rank questions for large graphs. For example, FastWhyRank
takes 28 seconds over IMDb with size (1.7M, 5.2M) to
compute query rewrites with answer closeness at least
95%.FastWhyRank outperforms FastWhyRankN by 3 times
on average, due to the early stopping strategy.

Impact of factors: efficiency. Figure 10(b) tells us that all algo-
rithms take longer time given larger budget. FastWhyRank
is on average 8.16 (resp. 2) times faster than ExactWhyRank
(resp. FastWhyRankN). Figure 10(c) verifies that while all the
algorithms take longer time for larger queries, FastWhyRank
is the least sensitive due to the pruning.

Scalability. We verify the efficiency using larger bench-
mark graphs BSBM, by varying |G| from (10M, 27M)
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Fig. 11: Real-world Why-questions
to (50M, 126M). Figure 10(d) (in log scale) verifies that
FastWhyRank scales well with |G|, and is less sensitive com-
pared with FastWhyRankN and ExactWhyRank. It improves
FastWhyRankN and ExactWhyRank better over larger |G|,
and is 1.9 and 4.8 times faster than FastWhyRankN and
ExactWhyRank over graphs of size (50M, 126M).

Exp-5: Case Analysis. We also verify the application of
our techniques in real online e-commerce recommendation
scenarios from our industry partner. We show two cases.

Why-rank. A user aims to find new tablet models (OS version
>12) produced by Apple with 64-GB storage, and price
less than $700. Q1, as shown in Figure 11, returns {iPad
Mini 5, iPad Air 3}. The author asks a follow-up Why-rank
questions, wishing to find why Mini 5 is ranked higher.
FastWhyRank revises Q1 by an AddL on the output node.
The revised query returns {iPad Air 3, iPad Mini 5} and
suggests that the user may interest more on a larger display.

Multi-Why. A query Q2 aims to find a Game Console along
with its GPU produced by Microsoft and have a best selling
game as ”Call of Duty 3”. While {(Xbox one,Durango),(Xbox
one S, Edmonton),(Xbox one X, Scorpio)} are returned, the
user asks why return {(Xbox one,Durango)} given it is an
old version. MultiApproxWhy rewrites Q2 to Q′2 by an AddL
on Game Console. This operator suggests that the user may
interest more on a more advanced console, i.e., has a higher
HDMI version, as verified by follow up search queries.
8 RELATED WORK

We categorize the related work as follows.

Why-questions for relational data. Why and Why-not queries
have been studied for relational queries [14], [15], [17]–[19].
There are typically two methods: (1) Data editing modi-
fies data such that the missing (resp. unexpected) answers
appear (resp. disappear) in the modified database; and (2)
Query manipulation identifies the relational operators that
eliminate specific tuples [14] (for Why questions) or intro-
duce new ones [15], and update queries accordingly [19].
Our work approaches query manipulation to enable ex-
ploratory graph search, which requires a better understand-
ing on the impact of operators to explain unexpected and
missing answers. While data editing is orthogonal to our
work, our algorithms readily extend to track the modified
fraction of query answers and responsible operators to
suggest relevant editing of graph data.

Skyline operators are used to rewrite queries to deal
with user feedback which contains both unexpected and
desired answers [28]. Instead of asking users for a complete
set of feedback tuples, a pointing domination theory based
framework is proposed to find ”implicit” user feedback [29].
Such techniques have been studied for (reversed) top-k [18]
and reverse skyline queries [17], spatial keyword queries
[30] and metric probabilistic range queries [31].

These works cannot be directly applied for subgraph
queries over general attributed graphs. To make use of

conventional Why-provenance for relational queries, one
may express subgraph queries with literals with relational
queries [32], [33]. This alone may rely on enhanced alge-
bra [33] or nontrivial encoding [32], and can be expensive for
large graphs. with additional transformation cost; Moreover,
we develop effective pruning techniques that exploit topo-
logical information and query locality to reduce verification
cost, which is not readily applicable for relational queries.

Why-questions for graphs. “Why-empty” and “Why-so-
many” have been studied to support graph search with
SPARQL [34], keywords [35] and pattern queries [25], [26],
[36]. (1) For ’Why-empty’, SPARQL queries are decomposed
into basic operators [34]. Operators that lead to empty
answers are identified, and relaxed to include more entities
of interests. (2) To explain missing entities for keyword
queries in XML data, “You May Also Like” queries are
extracted using an A* algorithm [35]. (3) Query patterns
are reformulated into supergraphs with maximized diver-
sity [26]. Maximal common subgraphs between queries and
data graphs are computed to answer “too many” or “too
few” questions [25].

Closer to our work is answering Why-not queries
in graph databases [36] with different query semantics.
Given a graph database, a query and a set of missing
graphs, the Why-not question aims to find a subgraph by
adding/deleting edges, such that the missing graphs that
contain it can be included in the answer set. Our work
differs from the prior work as follows. (1) We focus on
entity search with subgraph queries in single attributed
graphs. This is different from searching subgraphs in graph
databases. (2) Our methods support a rich set of struc-
tural and semantic editing operators, not limited to edge
insertion and deletion [36]. Moreover, we consider practical
value constraints and cost models that yield more intuitive
explanations for entity search in graphs. (3) We develop
algorithms with provable performance guarantees for Why-
questions. These are not addressed by prior work.

Exploratory search. Exploratory search is commonly used to
help users to explore unfamiliar data [37], [38]. (1) Instead
of frequent subgraphs [37], we discover “picky” structures
and operators to construct new queries for users. Indeed,
frequent subgraphs are not necessarily helpful to acquire
specific entities. (2) Query generation by example [38] is
developed for relational queries only, and does not apply
for general subgraph queries. (3) Querying by example [39]
finding similar answers to specified examples rather than
computing queries that identify them. Why-questions can-
not be directly answered by these methods.

9 CONCLUSIONS
We have formalized the problem of explaining Why-
questions for subgraph queries. We have shown that these
problems are in general intractable. We have developed
feasible algorithms, from exact and approximations to fast
heuristics, with properties such as relative approximation
ratio, and early termination. As verified by our experi-
mental study, our methods are efficient and report useful
explanations. One future topic is to support multiple Why
and Why-not questions with e.g., multi-query optimization
and implicit user feedback. Another topic is to explore data
editing models for answering Why-questions.
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