

Discovering Graph Temporal Association Rules

Mohammad Hossein Namaki

Yinghui Wu

Qi Song

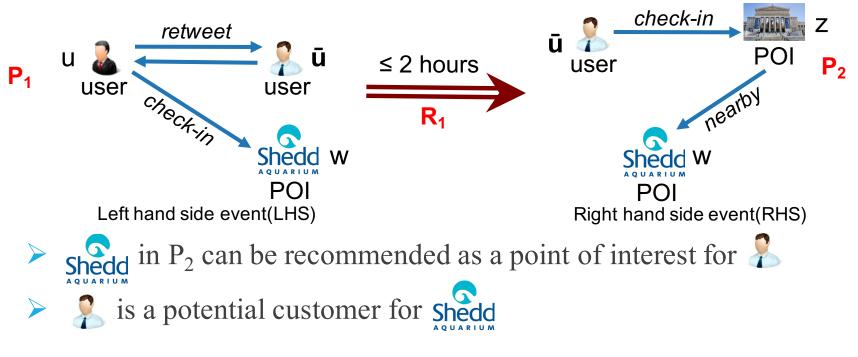
Peng Lin

Tingjian Ge*

Washington State University, *UMass Lowell

Temporal association rules in networks

Time-aware POI recommendation



Requirement: AR's with topological, semantic and temporal constraints

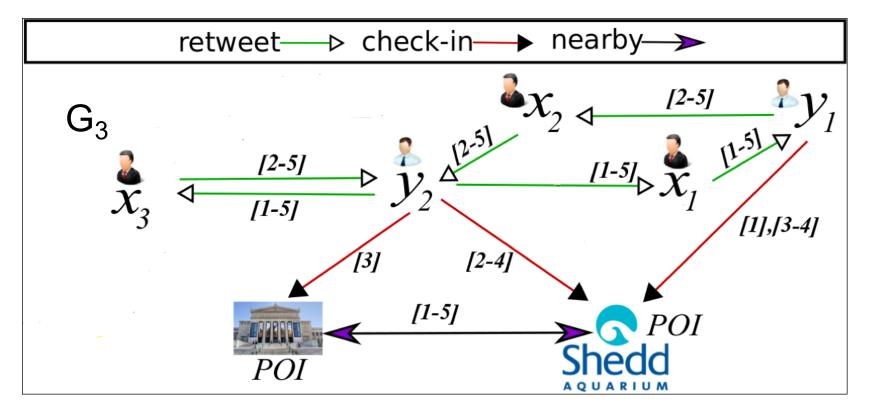
Outline

- Graph temporal association rules (GTARs) definition
- GTARs discovery problem formalization
- > A feasible GTAR discovery algorithm
- > Experiment study: verify the effectiveness of GTARs, and the efficiency of GTAR discovery algorithm.

Temporal Graph

 \geq Temporal graph G_T(V,E,L,T).

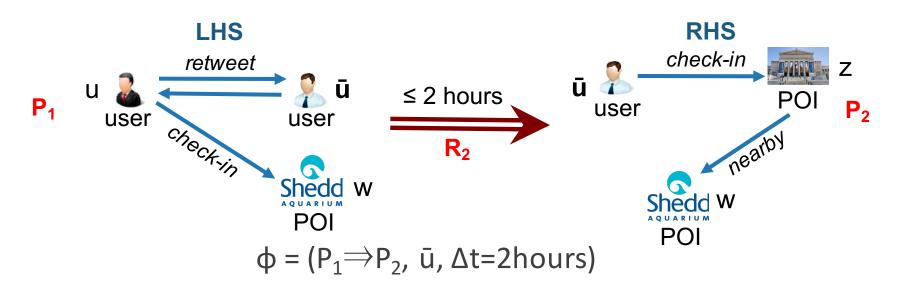
Snapshot G_t: induced by the set of all edges associated with time stamp t.



Graph temporal association rules (GTAR)

- → GTAR ϕ = (P₁ \Rightarrow P₂, ū, Δt)
 - ū: common shared focus.
 - $> \Delta t$: a constant that specifies a time interval.

If there exists an occurrence of event P_1 at an entity specified by $\mathbf{\bar{u}}$ at some time t, then it is likely that an event P_2 occurs at the same entity, within a time window [t, t + Δ t]



Events and Matching

Events

> Connected subgraph pattern carry a designated *focus* node.

Event matching

> An event **P** occurred in \mathbf{G}_{T} at time **t** if there is a matching relation (R_t) between **P** and snapshot \mathbf{G}_{t}

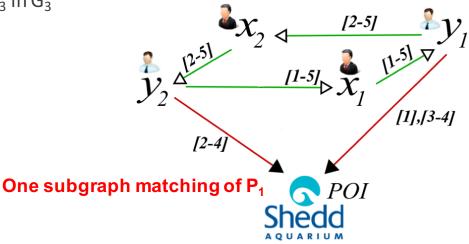
 \succ focus occurrence o(P, \bar{u} , t): the nodes in V that matches \bar{u} induced by R_t

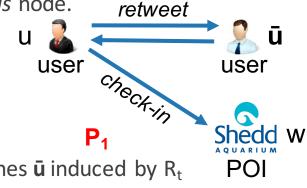
> Example:

> Matches of \bar{u} induced by R_3 in G_3

contains $\{(x_1,3), (x_2,3), (x_3,3)\}$

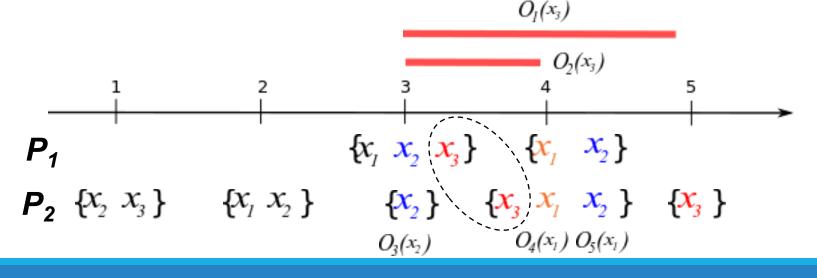
> o(P₁, **ū**,3) is {x₁,x₂,x₃}





GTAR occurrence

- > Given a time window $[t_1, t_2]$, ϕ occurs if at least a node matches the focus of both P₁ and P₂ at t₁ and t₂, respectively.
- > A time window may contain multiple occurrences of a GTAR.
- Minimal occurrence
 - > $O(v)=[t_1,t_2]$ is an occurrence of ϕ in G_T supported by node v
 - > There exists no O'(v) \subseteq O(v), such that O'(v) is also an occurrence



Support and Confidence

> Based on minimal occurrences $O(\varphi, G_T)$

$$\operatorname{Supp}(\varphi, \mathbf{G}_T) = \frac{|O(\varphi, \mathbf{G}_T)|}{|C(\overline{u})||T|} \xrightarrow{\text{# Occurrence of this rule}} \operatorname{Normalizer}$$

 \succ Confidence: measures how likely P₂ occurs within Δ t time at the focus occurrence of P₁

$$Conf(\varphi, G_T) = \frac{Supp(\varphi, G_T)}{Supp(P_1, G_T)} \xrightarrow{\hspace{1cm} \# \text{ Support of this rule}} \\ \# \text{ Support of LHS}$$

Informative GTARs

- Interested in GTARs with high support and confidence
- > Maximal GTARs with size bound to be more informative
- In a b-maximal GTAR, both LHS and RHS have at most b edges.

The Discovery Problem

- > Input: Temporal graph G_T , focus \bar{u} , time interval Δt , size bound b, support threshold σ , and confidence threshold θ ;
- **Output:** The set of *b*-maximal GTARs Σ pertaining to \overline{u} and Δt such that for each GTAR $\phi \in \Sigma$, Supp(ϕ , G_T) $\geq \sigma$, and Conf(ϕ , G_T) $\geq \theta$.

GTAR Discovery

Integrate event mining and rule discovery as a single process
Intuition:

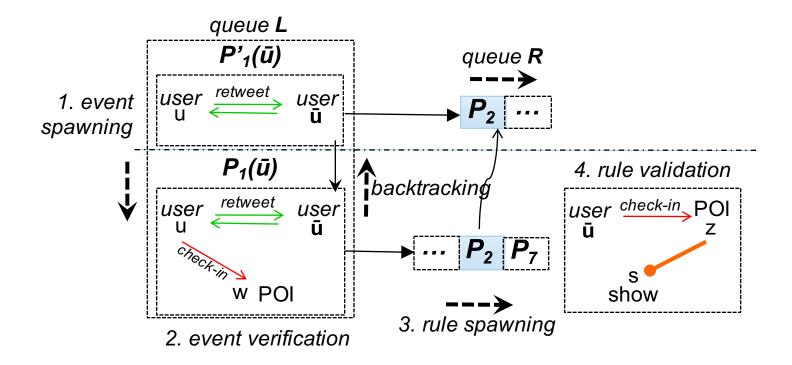
 $Conf(\varphi, G_T) = \frac{Supp(\varphi, G_T)}{Supp(P_1, G_T)} \xrightarrow{\mathsf{Rule with high support}} \mathsf{LHS with low support}$

LHS generation by best-first strategy.

- Generate and verify best new LHS events
- RHS generation given fixed LHS
 - To generate and validate new GTAR candidates by appending best RHS events to verified LHS events.
 - > It prefers RHS events with high support.

GTAR Discovery

> GTAR discovery:



Performance analysis and optimization

Complexity:

- Time: O(|T|N(b)(b+|V|)(b+|E|)+N(b)²|T|)
- Space: O(N(b) | C(ū) | |T|)
- Size bound b is small in practice and
- > Number of events *N(b)* is significantly reduced by pruning rules

Optimization

- Pruning rules: extend (conditional) anti-monotonicity to GTARs
- > Anytime performance: returning GTARs as the events are discovered
- Batch matching: merge snapshots to a graph and perform one matching

Experimental Study

Datasets

	#Nodes	#Edges	#Labels	#Snapshots
Citation	4.3M	21.7M	273	80
Panama	839k	3.6M	433	12k
Movielens	81.5k	10M	21	1439

Algorithms

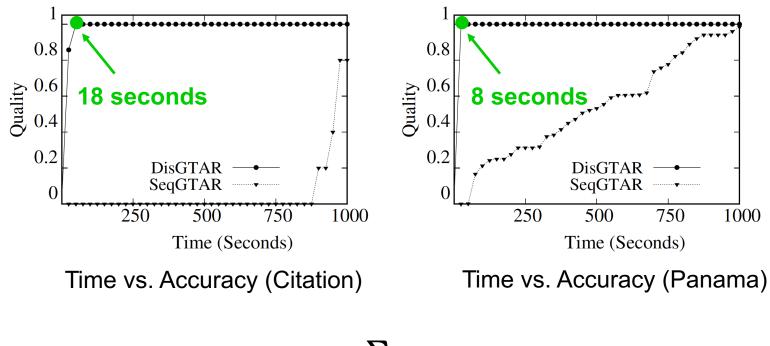
- > **DisGTAR**: our integrated algorithms including all pruning rules
- > **DisGTARn**: without the pruning strategies. (**Pruning**)
- IsoGTAR: isolating the snapshots and computes event matching over each snapshots one by one. (Batch matching)
- SeqGTAR: separating event mining and rule discovery to two independent processes. (Integrate mining)

Performance of GTAR discovery

	DisGTAR		DisGTARn		SeqGTAR		IsoGTAR	
	Time(s)	# verif.	Time(s)	# verif.	Time(s)	# verif.	Time(s)	# verif.
Panama	9	1,194	276	8,393	560	8,393	N/A	
Citation	22	157	994	12,507	1,621	12,507	12,721	11,461
MovieLens	558	191	2,432	1,423	2,445	1,423	N/A	

DisGTAR outperforms DisGTARn, SeqGTAR, and IsoGTAR by 6.28, 7.85 and 64.79 times on average

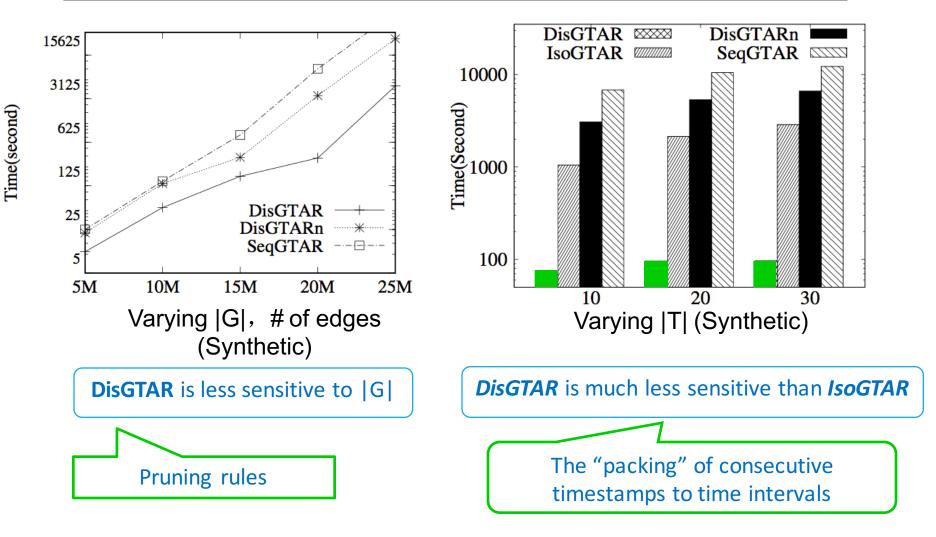
Anytime performance



anytime quality(t) =
$$\frac{\sum_{\varphi \in \Sigma'} Conf(\varphi, G_T)}{\sum_{\varphi \in \Sigma^*} Conf(\varphi, G_T)}$$

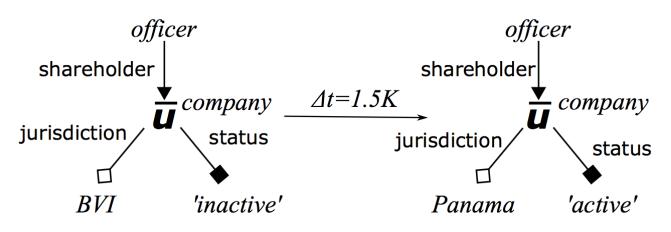
DisGTAR converges with high quality GTARs much faster than SeqGTAR

Scalability of DisGTAR

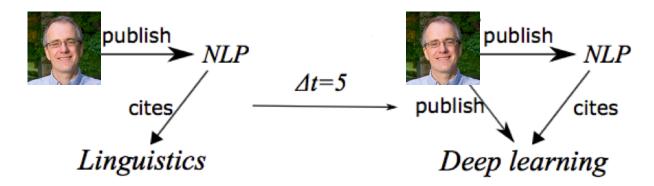


16

Case Study



Matches: F.Geneve Project Management



Matches: Prof. Christopher Manning(Stanford Univ.)

Conclusion and future work

Conclusion

- > We have proposed a class of temporal association rules over graphs
- We have studied the discovery problem of GTARs
- > Despite the enhanced expressive power of GTARs, it is feasible to find and apply GTARs in practice.

Future work

- > Extending GTARs to multi-focus and exploring other quality metrics
- > Fast online discovery of GTARs over graph streams.

Sponsored By:

Google Faculty Research Awards

Related Work

Event Pattern Discovery by Keywords in Graph Streams (BigData'17)

BEAMS: Bounded Event Detection in Graph Streams (ICDE'16) (<u>http://eecs.wsu.edu/~ksasani/BEAMS/Display.php</u>)